Hamostaseologie 2022; 42(S 01): S5-S12
DOI: 10.1055/a-1726-4793
Review Article

Experiences in Routine Genetic Analysis of Hereditary Hemorrhagic, Thrombotic, and Platelet Disorders

B. Pezeshkpoor
1   Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
2   Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
,
J. Oldenburg
1   Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
2   Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
,
A. Pavlova
1   Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
2   Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
› Author Affiliations

Abstract

Hemostasis is a complex and tightly regulated system that attempts to maintain a homeostatic balance to permit normal blood flow, without bleeding or thrombosis. Hemostasis reflects the subtle balance between procoagulant and anticoagulant factors in the pathways of primary hemostasis, secondary hemostasis, and fibrinolysis. The major components in this interplay include the vascular endothelium, platelets, coagulation factors, and fibrinolytic factors. After vessel wall injury, the subendothelium is exposed to the blood stream, followed by rapid activation of platelets via collagen binding and von Willebrand factor–mediated platelet adhesion to the damaged vessel wall through platelet glycoprotein receptor Ib/IX/V. Activated platelets change their shape, release bioactive molecules from their granules, and expose negatively charged phospholipids on their surface. For a proper function of this process, an adequate number of functional platelets are required. Subsequently, a rapid generation of sufficient amounts of thrombin begins; followed by activation of the coagulation system and its coagulation factors (secondary hemostasis), generating fibrin that consolidates the platelet plug. To maintain equilibrium between coagulation and anticoagulation, the naturally occurring anticoagulants such as protein C, protein S, and antithrombin keep this process in balance. Deficiencies (inherited or acquired) at any level of this fine-tuned system result in pathologic bleedings or increased hypercoagulability states leading to thrombosis. This review will focus on genetic diagnosis of inherited bleeding, thrombotic, and platelet disorders, discussing strengths and limitations of existing diagnostic settings and genetic tools and highlight some important considerations necessary for clinical application.

Zusammenfassung

Die Hämostase ist ein komplexes und streng reguliertes System, das dazu dient ein homöostatisches Gleichgewicht aufrecht zu erhalten und einen normalen Blutfluss ohne Blutungen oder Thrombosen zu ermöglichen. Die Hämostase stellt das fein balancierte Gleichgewicht zwischen gerinnungsfördernden und gerinnungshemmenden Faktoren in der primären Hämostase, der sekundären Hämostase und der Fibrinolyse dar. Zu den wichtigsten Komponenten in diesem Zusammenspiel gehören das Gefäßendothel, die Thrombozyten, die Gerinnungsfaktoren und die fibrinolytischen Faktoren. Nach einer Verletzung der Gefäßwand wird das Subendothel dem Blutstrom ausgesetzt, gefolgt von einer raschen Aktivierung der Thrombozyten durch Kollagenbindung und VWF-vermittelte Thrombozytenadhäsion an der beschädigten Gefäßwand durch den Thrombozyten-Glykoproteinrezeptor Ib/IX/V. Aktivierte Thrombozyten verändern ihre Form, setzen bioaktive Moleküle aus ihren Granula frei und legen negativ geladene Phospholipide auf ihrer Oberfläche frei. Dieser Prozessder primären Hämostase setzt eine ausreichende Anzahl funktionstüchtiger Thrombozyten voraus. Anschließend beginnt eine rasche Bildung großer Mengen von Thrombin, gefolgt von einer Aktivierung der prokoagulatorischen Gerinnungsfaktoren (sekundäre Hämostase), wodurch Fibrin entsteht, das den initialen Thrombozytenpfropf verfestigt. Um das Gleichgewicht zwischen Gerinnung und Antikoagulation aufrechtzuerhalten, halten die natürlich vorkommenden Antikoagulanzien wie Protein C, Protein S und Antithrombin diesen Prozess im Gleichgewicht. Defizite (vererbt oder erworben) auf irgendeiner Ebene dieses so fein abgestimmten Systems führen zu pathologischen Blutungen oder einer erhöhten Hyperkoagulabilität, die zu Thrombosen führt. Diese Übersichtsarbeit fokussiert die genetische Diagnose von vererbten Blutungs-, Thrombose- und Thrombozytenstörungen, wobei die Stärken und Limitationen bestehender diagnostischer Verfahren und genetischer Techniken erörtert und wichtige Überlegungen für die klinische Anwendung gegeben werden.



Publication History

Received: 08 November 2021

Accepted: 20 December 2021

Article published online:
28 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15 (07) 1262-1272
  • 2 Bastida JM, Benito R, Lozano ML. et al. Molecular diagnosis of inherited coagulation and bleeding disorders. Semin Thromb Hemost 2019; 45 (07) 695-707
  • 3 Sivapalaratnam S, Collins J, Gomez K. Diagnosis of inherited bleeding disorders in the genomic era. Br J Haematol 2017; 179 (03) 363-376
  • 4 Quiroga T, Goycoolea M, Panes O. et al. High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding. A prospective study of 280 patients and 299 controls. Haematologica 2007; 92 (03) 357-365
  • 5 Blanchette VS, Key NS, Ljung LR, Manco-Johnson MJ, van den Berg HM, Srivastava A. Subcommittee on Factor VIII, Factor IX and Rare Coagulation Disorders of the Scientific and Standardization Committee of the International Society on Thrombosis and Hemostasis. Definitions in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost 2014; 12 (11) 1935-1939
  • 6 Heremans J, Freson K. High-throughput sequencing for diagnosing platelet disorders: lessons learned from exploring the causes of bleeding disorders. Int J Lab Hematol 2018; 40 (Suppl. 01) 89-96
  • 7 Ivaskevicius V, Windyga J, Baran B. et al. Phenotype-genotype correlation in eight Polish patients with inherited Factor XIII deficiency: identification of three novel mutations. Haemophilia 2007; 13 (05) 649-657
  • 8 Biswas A, Ivaskevicius V, Thomas A, Oldenburg J. Coagulation factor XIII deficiency. Diagnosis, prevalence and management of inherited and acquired forms. Hamostaseologie 2014; 34 (02) 160-166
  • 9 Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation. Semin Thromb Hemost 2016; 42 (03) 292-305
  • 10 Gresele P. Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 11 Bastida Bermejo JM, Hernández-Rivas JM, González-Porras JR. Nuevos métodos diagnósticos en los trastornos plaquetarios hereditarios. Med Clin (Barc) 2017; 148 (02) 71-77
  • 12 Bacci M, Ferretti A, Marchetti M. et al. Autoimmune disorders of platelet function: systematic review of cases of acquired Glanzmann thrombasthenia and acquired delta storage pool disease. Blood Transfus 2021; DOI: 10.2450/2021.0119-21.
  • 13 Saposnik B, Binard S, Fenneteau O. et al; French MYH9 Networka. Mutation spectrum and genotype-phenotype correlations in a large French cohort of MYH9-related disorders. Mol Genet Genomic Med 2014; 2 (04) 297-312
  • 14 Kruse-Jarres R, Johnsen JM. How I treat type 2B von Willebrand disease. Blood 2018; 131 (12) 1292-1300
  • 15 Caspers M, Pavlova A, Driesen J. et al. Deficiencies of antithrombin, protein C and protein S - practical experience in genetic analysis of a large patient cohort. Thromb Haemost 2012; 108 (02) 247-257
  • 16 Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993; 90 (03) 1004-1008
  • 17 Souto JC, Almasy L, Borrell M. et al. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic analysis of idiopathic thrombophilia. Am J Hum Genet 2000; 67 (06) 1452-1459
  • 18 Ageno W, Agnelli G, Imberti D. et al; MASTER Investigators. Risk factors for venous thromboembolism in the elderly: results of the master registry. Blood Coagul Fibrinolysis 2008; 19 (07) 663-667
  • 19 Savoia A, De Rocco D, Pecci A. MYH9 gene mutations associated with bleeding. Platelets 2017; 28 (03) 312-315
  • 20 Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology (Am Soc Hematol Educ Program) 2017; 2017 (01) 385-399
  • 21 Lambert MP. Improving interpretation of genetic testing for hereditary hemorrhagic, thrombotic, and platelet disorders. Hematology (Am Soc Hematol Educ Program) 2020; 2020 (01) 76-81
  • 22 Hayward CPM. How I investigate for bleeding disorders. Int J Lab Hematol 2018; 40 (Suppl. 01) 6-14
  • 23 Peyvandi F, Menegatti M, Palla R. Rare bleeding disorders: worldwide efforts for classification, diagnosis, and management. Semin Thromb Hemost 2013; 39 (06) 579-584
  • 24 Oldenburg J, Ivaskevicius V, Schröder J, Müller CR, Ganguly A. Genetic background and inhibitors in previously untreated or minimally treated young patients with severe haemophilia A treated with sucrose-formulated recombinant factor VIII. Thromb Haemost 2006; 95 (05) 903-905
  • 25 Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH. BRIDGE-BPD Consortium and the ThromboGenomics Consortium. Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127 (23) 2814-2823
  • 26 Bastida JM, Lozano ML, Benito R. et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2018; 103 (01) 148-162
  • 27 Downes K, Megy K, Duarte D. et al; NIHR BioResource. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood 2019; 134 (23) 2082-2091
  • 28 Megy K, Downes K, Simeoni I. et al; Subcommittee on Genomics in Thrombosis and Hemostasis. Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: communication from the SSC of the ISTH. J Thromb Haemost 2019; 17 (08) 1253-1260
  • 29 Green RC, Berg JS, Grody WW. et al; American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 2013; 15 (07) 565-574
  • 30 Clayton EW, McCullough LB, Biesecker LG, Joffe S, Ross LF, Wolf SM. Clinical Sequencing Exploratory Research (CSER) Consortium Pediatrics Working Group. Addressing the ethical challenges in genetic testing and sequencing of children. Am J Bioeth 2014; 14 (03) 3-9
  • 31 Burke W, Antommaria AHM, Bennett R. et al. Recommendations for returning genomic incidental findings? We need to talk!. Genet Med 2013; 15 (11) 854-859
  • 32 Andersson NG, Rossing M, Fager Ferrari M. et al. Genetic screening of children with suspected inherited bleeding disorders. Haemophilia 2020; 26 (02) 314-324
  • 33 Blaauwgeers MW, van Asten I, Kruip MJHA. et al. The limitation of genetic testing in diagnosing patients suspected for congenital platelet defects. Am J Hematol 2020; 95 (01) E26-E28
  • 34 Leinøe E, Gabrielaite M, Østrup O. et al. Outcome of an enhanced diagnostic pipeline for patients suspected of inherited thrombocytopenia. Br J Haematol 2019; 186 (02) 373-376
  • 35 Wang Q, Cao L, Sheng G. et al. Application of high-throughput sequencing in the diagnosis of inherited thrombocytopenia. Clin Appl Thromb Hemost 2018; 24 (9 Suppl): 94S-103S
  • 36 Andres O, König E-M, Althaus K. et al; THROMKIDplus Study Group of the Society of Paediatric Oncology Haematology (Gesellschaft für Pädiatrische Onkologie und Hämatologie, GPOH) and the Society of Thrombosis Haemostasis Research (Gesellschaft für Thrombose- und Hämostaseforschung, GTH). Use of targeted high-throughput sequencing for genetic classification of patients with bleeding diathesis and suspected platelet disorder. TH Open 2018; 2 (04) e445-e454
  • 37 Johnson B, Doak R, Allsup D. et al; UK GAPP Study Group. A comprehensive targeted next-generation sequencing panel for genetic diagnosis of patients with suspected inherited thrombocytopenia. Res Pract Thromb Haemost 2018; 2 (04) 640-652
  • 38 Ver Donck F, Downes K, Freson K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J Thromb Haemost 2020; 18 (08) 1839-1845
  • 39 Kousi M, Katsanis N. Genetic modifiers and oligogenic inheritance. Cold Spring Harb Perspect Med 2015; 5 (06) a017145-a017145
  • 40 Preisler B, Pezeshkpoor B, Banchev A. et al. Familial multiple coagulation factor deficiencies (FMCFDs) in a large cohort of patients-a single-center experience in genetic diagnosis. J Clin Med 2021; 10 (02) 347
  • 41 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 42 Biesecker LG, Harrison SM. ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med 2018; 20 (12) 1687-1688
  • 43 Pavlova A, Preisler B, Driesen J. et al. Congenital combined deficiency of coagulation factors VII and X–different genetic mechanisms. Haemophilia 2015; 21 (03) 386-391
  • 44 Oldenburg J, Pezeshkpoor B, Pavlova A. Historical review on genetic analysis in hemophilia A. Semin Thromb Hemost 2014; 40 (08) 895-902
  • 45 Pezeshkpoor B, Pavlova A, Oldenburg J, El-Maarri O. F8 genetic analysis strategies when standard approaches fail. Hamostaseologie 2014; 34 (02) 167-173
  • 46 Yadegari H, Driesen J, Pavlova A, Biswas A, Hertfelder HJ, Oldenburg J. Mutation distribution in the von Willebrand factor gene related to the different von Willebrand disease (VWD) types in a cohort of VWD patients. Thromb Haemost 2012; 108 (04) 662-671