CC BY 4.0 · Synthesis 2022; 54(03): 629-642
DOI: 10.1055/a-1654-3302
feature

Heterogeneous Hydrogenation of Quinoline Derivatives Effected by a Granular Cobalt Catalyst

Daniel Timelthaler
,
Christoph Topf
Financial support was provided by the Austrian Science Fund (FWF), Standalone Project P 32045 ‘Metallocorrole-Based Catalysts for Biomass Valorization’. For the purpose of open access, the author has applied a CC BY 4.0 public copyright license to any Author Accepted Manuscript version arising from this submission.


Abstract

We communicate a convenient method for the pressure hydrogenation of quinolines in aqueous solution by using a particulate cobalt-based catalyst that is prepared in situ from simple Co(OAc)2·4H2O through reduction with abundant zinc powder. This catalytic protocol permits a brisk and atom-efficient access to a variety of 1,2,3,4-tetra­hydroquinolines thereby relying solely on easy-to-handle reagents that are all readily obtained from commercial sources. Both the reaction setup assembly and the autoclave charging procedure are conducted on the bench outside an inert-gas-operated containment system, thus rendering the overall synthesis time-saving and operationally very simple.

Supporting Information



Publication History

Received: 09 July 2021

Accepted after revision: 14 September 2021

Accepted Manuscript online:
27 September 2021

Article published online:
10 November 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Scott J, Williams R. Chem. Rev. 2002; 102: 1669
    • 2a Katritzky A, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
    • 2b Sridharan V, Suryavanshi P, Menéndez J. Chem. Rev. 2011; 111: 7157
    • 2c Muthukrishnan I, Sridharan V, Menéndez J. Chem. Rev. 2019; 119: 5057
    • 3a Jardine I, McQuillin F. J. Chem. Soc. D 1970; 626a
    • 3b Wen J, Tan R, Liu S, Zhao Q, Zhang X. Chem. Sci. 2016; 7: 3047
    • 3c Kim S, Loose F, Bezdek M, Wang X, Chirik P. J. Am. Chem. Soc. 2019; 141: 17900
    • 4a Wang W, Lu S, Yang P, Han X, Zhou Y. J. Am. Chem. Soc. 2003; 125: 10536
    • 4b Li H, Jiang J, Lu G, Huang F, Wang Z.-X. Organometallics 2011; 30: 3131
    • 4c Dobereiner G, Nova A, Schley N, Hazari N, Miller S, Eisenstein O, Crabtree R. J. Am. Chem. Soc. 2011; 133: 7547
    • 4d Wu J, Barnard J, Zhang Y, Talwar D, Robertson C, Xiao J. Chem. Commun. 2013; 49: 7052
    • 4e Vivancos Á, Beller M, Albrecht M. ACS Catal. 2017; 8: 17
    • 5a Rosales M, Navarro J, Sánchez L, González A, Alvarado Y, Rubio R, De La Cruz C, Rajmankina T. Transition Met. Chem. 1996; 21: 11
    • 5b Zhou H, Li Z, Wang Z, Wang T, Xu L, He Y, Fan Q, Pan J, Gu L, Chan A. Angew. Chem. Int. Ed. 2008; 47: 8464
    • 5c Chatterjee B, Kalsi D, Kaithal A, Bordet A, Leitner W, Gunanathan C. Catal. Sci. Technol. 2020; 10: 5163
    • 5d Li C, Pan Y, Feng Y, He Y, Liu Y, Fan Q. Org. Lett. 2020; 22: 6452
    • 5e Rosales M, Molina K, Arrieta F, Fernández D, Baricelli P. Mol. Catal. 2020; 490: 110970
  • 6 Cai X, Huang W, Chen Z, Zhou Y. Chem. Commun. 2014; 50: 9588
  • 7 Chelucci G, Baldino S, Baratta W. Acc. Chem. Res. 2015; 48: 363
  • 8 Fish R, Thormodsen A, Cremer G. J. Am. Chem. Soc. 1982; 104: 5234
    • 9a Wang Y, Zhu L, Shao Z, Li G, Lan Y, Liu Q. J. Am. Chem. Soc. 2019; 141: 17337
    • 9b Papa V, Cao Y, Spannenberg A, Junge K, Beller M. Nat. Catal. 2020; 3: 135
    • 9c Tan Z, Xiong B, Yang J, Ci C, Jiang H, Zhang M. J. Catal. 2020; 392: 135
    • 9d Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Angew. Chem. Int. Ed. 2021; 60: 5108
  • 10 Chakraborty S, Brennessel W, Jones W. J. Am. Chem. Soc. 2014; 136: 8564
  • 11 Zhu G, Pang K, Parkin G. J. Am. Chem. Soc. 2008; 130: 1564
    • 12a Alvanipour A, Kispert L. J. Mol. Catal. 1988; 48: 277
    • 12b Xu R, Chakraborty S, Yuan H, Jones W. ACS Catal. 2015; 5: 6350
    • 12c Adam R, Cabrero-Antonino J, Spannenberg A, Junge K, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2017; 56: 3216
    • 12d Duan Y, Du X, Cui Z, Zeng Y, Liu Y, Yang T, Wen J, Zhang X. J. Am. Chem. Soc. 2019; 141: 20424
    • 12e Sandl S, Maier T, van Leest N, Kröncke S, Chakraborty U, Demeshko S, Koszinowski K, de Bruin B, Meyer F, Bodensteiner M, Herrmann C, Wolf R, Jacobi von Wangelin A. ACS Catal. 2019; 9: 7596
  • 13 Cabrero-Antonino J, Adam R, Junge K, Jackstell R, Beller M. Catal. Sci. Technol. 2017; 7: 1981
    • 14a Pang M, Chen J, Zhang S, Liao R, Tung C, Wang W. Nat. Commun. 2020; 11: 1249
    • 14b Maier TM, Sandl S, Shenderovich IG, Jacobi von Wangelin A, Weigand JJ, Wolf R. Chem. Eur. J. 2019; 25: 238
  • 15 Zhong Y, Zhou T, Zhang Z, Chang R. ACS Omega 2019; 4: 8487
  • 16 Alshakova I, Gabidullin B, Nikonov G. ChemCatChem 2018; 10: 4860
  • 17 Zhang L, Qiu R, Xue X, Pan Y, Xu C, Li H, Xu L. Adv. Synth. Catal. 2015; 357: 3759
    • 18a Wang C, Li C, Wu X, Pettman A, Xiao J. Angew. Chem. Int. Ed. 2009; 48: 6524
    • 18b Wang Y, Huang Z, Leng X, Zhu H, Liu G, Huang Z. J. Am. Chem. Soc. 2018; 140: 4417
    • 19a Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis . Nishimura S. Wiley; New York: 2001
    • 19b Wei Z, Shao F, Wang J. Chin. J. Catal. 2019; 40: 980
    • 20a Hashimoto N, Takahashi Y, Hara T, Shimazu S, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Lett. 2010; 39: 832
    • 20b Rahi R, Fang M, Ahmed A, Sánchez-Delgado R. Dalton Trans. 2012; 41: 14490
    • 20c Mao H, Ma J, Liao Y, Zhao S, Liao X. Catal. Sci. Technol. 2013; 3: 1612
    • 20d Xia Y, Ma J, Wang X, Yang L, Wu L. Catal. Sci. Technol. 2017; 7: 5515
    • 20e Wang L, Chen M.-X, Yan Q.-Q, Xu S.-L, Chu S.-Q, Chen P, Lin Y, Liang H.-W. Sci. Adv. 2019; 5: eaax6322
    • 21a Campanati M, Casagrande M, Fagiolino I, Lenarda M, Storaro L, Battagliarin M, Vaccari A. J. Mol. Catal. A: Chem. 2002; 184: 267
    • 21b Mévellec V, Roucoux A. Inorg. Chim. Acta 2004; 357: 3099
    • 21c Fan G, Wu J. Catal. Commun. 2013; 31: 81
    • 21d Niu M, Wang Y, Chen P, Du D, Jiang J, Jin Z. Catal. Sci. Technol. 2015; 5: 4746
    • 21e Karakulina A, Gopakumar A, Akçok İ, Roulier B, LaGrange T, Katsyuba S, Das S, Dyson P. Angew. Chem. Int. Ed. 2015; 55: 292
    • 21f Karakulina A, Gopakumar A, Fei Z, Dyson P. Catal. Sci. Technol. 2018; 8: 5091
    • 22a Bianchini C, Dal Santo V, Meli A, Moneti S, Moreno M, Oberhauser W, Psaro R, Sordelli L, Vizza F. J. Catal. 2003; 213: 47
    • 22b Sun Y, Fu H, Zhang D, Li R, Chen H, Li X. Catal. Commun. 2010; 12: 188
    • 22c Fang M, Machalaba N, Sánchez-Delgado R. Dalton Trans. 2011; 40: 10621
    • 22d Zhang L, Wang X, Xue Y, Zeng X, Chen H, Li R, Wang S. Catal. Sci. Technol. 2014; 4: 1939
    • 22e Jiang H, Zheng X. Catal. Sci. Technol. 2015; 5: 3728
    • 22f Tang M, Deng J, Li M, Li X, Li H, Chen Z, Wang Y. Green Chem. 2016; 18: 6082
    • 22g Sun B, Carnevale D, Süss-Fink G. J. Organomet. Chem. 2016; 821: 197
    • 22h Ye T, Li J, Kitano M, Hosono H. Green Chem. 2017; 19: 749
    • 22i Konnerth H, Prechtl M. Green Chem. 2017; 19: 2762
    • 22j Cao Y, Zhang H, Liu K, Chen K.-J. Chem. Commun. 2020; 56: 11311
    • 22k Cao Y, Ding L, Qiu Z, Zhang H. Catal. Commun. 2020; 143: 106048
    • 23a Barbaro P, Gonsalvi L, Guerriero A, Liguori F. Green Chem. 2012; 14: 3211
    • 23b Ji Y, Wei K, Liu T, Wu L, Zhang W. Adv. Synth. Catal. 2017; 359: 933
  • 24 Shaikh MN, Kalanthoden AN, Ali M, Haque MA, Aziz MA, Abdelnaby MM, Rani SK, Bakare AI. ChemistrySelect 2020; 5: 14827
    • 25a Ren D, He L, Yu L, Ding R.-S, Liu Y.-M, Cao Y, He H.-Y, Fan K.-N. J. Am. Chem. Soc. 2012; 134: 17592
    • 25b Zhao J, Yuan H, Qin X, Tian K, Liu Y, Wei C, Zhang Z, Zhou L, Fang S. Catal. Lett. 2020; 150: 2841
    • 26a Kaneda K, Mikami Y, Mitsudome T, Mizugaki T, Jitsukawa K. Heterocycles 2010; 82: 1371
    • 26b Bathla A, Pal B. J. Ind. Eng. Chem. 2019; 79: 314
  • 27 Sahoo B, Kreyenschulte C, Agostini G, Lund H, Bachmann S, Scalone M, Junge K, Beller M. Chem. Sci. 2018; 9: 8134
    • 28a Tsushima S, Sudzuki S. J. Chem. Soc. Jpn. 1943; 64: 1925
    • 28b Ryabchuk P, Agostini G, Pohl M, Lund H, Agapova A, Junge H, Junge K, Beller M. Sci. Adv. 2018; 4: eaat0761
    • 28c Ryabchuk P, Agapova A, Kreyenschulte C, Lund H, Junge H, Junge K, Beller M. Chem. Commun. 2019; 55: 4969
    • 28d Yun R, Ma W, Hong L, Hu Y, Zhan F, Liu S, Zheng B. Catal. Sci. Technol. 2019; 9: 6669
    • 28e Yang X, Niu L, Xia Z, Yan X, Bai G. Mol. Catal. 2020; 493: 111094
    • 28f Yun R, Ma Z, Hu Y, Zhan F, Qiu C, Zheng B, Sheng T. Catal. Lett. 2021;
    • 29a Chen F, Surkus A, He L, Pohl M, Radnik J, Topf C, Junge K, Beller M. J. Am. Chem. Soc. 2015; 137: 11718
    • 29b Wei Z, Chen Y, Wang J, Su D, Tang M, Mao S, Wang Y. ACS Catal. 2016; 6: 5816
    • 29c Ji P, Manna K, Lin Z, Urban A, Greene F, Lan G, Lin W. J. Am. Chem. Soc. 2016; 138: 12234
    • 29d Ji P, Song Y, Drake T, Veroneau S, Lin Z, Pan X, Lin W. J. Am. Chem. Soc. 2017; 140: 433
    • 29e Sorribes I, Liu L, Doménech-Carbó A, Corma A. ACS Catal. 2018; 8: 4545
    • 29f Jaiswal G, Subaramanian M, Sahoo M, Balaraman E. ChemCatChem 2019; 11: 2449
    • 29g Yun R, Hong L, Ma W, Wang S, Zheng B. ACS Appl. Nano Mater. 2019; 2: 6763
    • 29h Yun R, Hong L, Ma W, Zhang R, Zhan F, Duan J, Zheng B, Wang S. ChemCatChem 2019; 12: 129
    • 29i Gong W, Yuan Q, Chen C, Lv Y, Lin Y, Liang C, Wang G, Zhang H, Zhao H. Adv. Mater. 2019; 31: 1906051
    • 29j Rengshausen S, Van Stappen C, Levin N, Tricard S, Luska K, DeBeer S, Chaudret B, Bordet A, Leitner W. Small 2020; 17: 2006683
    • 29k Murugesan K, Chandrashekhar V, Kreyenschulte C, Beller M, Jagadeesh R. Angew. Chem. Int. Ed. 2020; 59: 17408
    • 29l Zhang S, Gan J, Xia Z, Chen X, Zou Y, Duan X, Qu Y. Chem 2020; 6: 2994
    • 29m He Z, Sun Y, Wang K, Wang Z, Guo P, Jiang C, Yao M, Li Z, Liu Z. Mol. Catal. 2020; 496: 111192
    • 29n Xu D, Zhao H, Dong Z, Ma J. ChemCatChem 2020; 12: 4406

      For a selection of seminal papers that exemplify this methodology, see:
    • 30a Westerhaus F, Jagadeesh R, Wienhöfer G, Pohl M, Radnik J, Surkus A, Rabeah J, Junge K, Junge H, Nielsen M, Brückner A, Beller M. Nat. Chem. 2013; 5: 537
    • 30b Jagadeesh R, Surkus A, Junge H, Pohl M, Radnik J, Rabeah J, Huan H, Schunemann V, Bruckner A, Beller M. Science 2013; 342: 1073
    • 30c Cui X, Li Y, Bachmann S, Scalone M, Surkus A, Junge K, Topf C, Beller M. J. Am. Chem. Soc. 2015; 137: 10652
  • 31 Cobalt Catalysis in Organic Synthesis: Methods and Reactions . Hapke M, Hilt G. Wiley-VCH; Weinheim: 2020
    • 32a Chen F, Sahoo B, Kreyenschulte C, Lund H, Zeng M, He L, Junge K, Beller M. Chem. Sci. 2017; 8: 6239
    • 32b Li G, Yang H, Zhang H, Qi Z, Chen M, Hu W, Tian L, Nie R, Huang W. ACS Catal. 2018; 8: 8396
    • 32c Han Y, Wang Z, Xu R, Zhang W, Chen W, Zheng L, Zhang J, Luo J, Wu K, Zhu Y, Chen C, Peng Q, Liu Q, Hu P, Wang D, Li Y. Angew. Chem. Int. Ed. 2018; 57: 11262
    • 32d Xu D, Zhao H, Dong Z, Ma J. ChemCatChem 2019; 11: 5475
    • 32e Leng Y, Du S, Feng G, Sang X, Jiang P, Li H, Wang D. ACS Appl. Mater. Interfaces 2019; 12: 474

      For selected reviews on catalytically active nanoscale metal particles, see:
    • 33a Bönnemann H, Richards R. Eur. J. Inorg. Chem. 2001; 2455
    • 33b An K, Somorjai G. Catal. Lett. 2014; 145: 233
    • 33c Liu L, Corma A. Chem. Rev. 2018; 118: 4981
  • 34 Sandl S, Schwarzhuber F, Pöllath S, Zweck J, Jacobi von Wangelin A. Chem. Eur. J. 2018; 24: 3403
  • 35 Hervochon J, Dorcet V, Junge K, Beller M, Fischmeister C. Catal. Sci. Technol. 2020; 10: 4820
  • 36 Büschelberger P, Reyes-Rodriguez E, Schöttle C, Treptow J, Feldmann C, Jacobi von Wangelin A, Wolf R. Catal. Sci. Technol. 2018; 8: 2648
  • 37 Banwell M, Jones M, Reekie T, Schwartz B, Tan S, White L. Org. Biomol. Chem. 2014; 12: 7433
    • 38a Adkins H, Billica H. J. Am. Chem. Soc. 1948; 70: 695
    • 38b Okazaki H, Onishi K, Soeda M, Ikefuji Y, Tamura R, Mochida I. Bull. Chem. Soc. Jpn. 1990; 63: 3167
    • 38c A quenched skeletal Ni catalyst for the effective partial hydrogenation of various heterocycles is described in: Liu C, Rong Z, Sun Z, Wang Y, Du W, Wang Y, Lu L. RSC Adv. 2013; 3: 23984
  • 39 Cho H, Török F, Török B. Org. Biomol. Chem. 2013; 11: 1209
  • 40 Hayashi E, Yamanaka H, Iijima C. Yakugaku Zasshi 1960; 80: 839
  • 41 Stegner P, Färber C, Zenneck U, Knüpfer C, Eyselein J, Wiesinger M, Harder S. Angew. Chem. Int. Ed. 2020; 60: 4252
  • 42 Dai H, Guan H. ACS Catal. 2018; 8: 9125
  • 43 Timelthaler D, Topf C. J. Org. Chem. 2019; 84: 11604
  • 44 Hamlin JE, Hirai K, Millan A, Maitlis PM. J. Mol. Catal. 1980; 7: 543
  • 45 Balzani V, Credi A, Venturi M. Molecular Devices and Machines: Concepts and Perspective for the Nanoworld, 2nd ed. Wiley-VCH; Weinheim: 2008
  • 46 Water and quinolines are not indefinitely miscible.
  • 47 Titova Y, Schmidt F. New J. Chem. 2021; 45: 4525
  • 48 Pagliero RJ, Lusvarghi S, Pierini AB, Brun R, Mazzieri MR. Bioorg. Med. Chem. 2010; 18: 142
  • 49 Hardtmann GE. US Patent 4015005, 1977
  • 50 Liou JP, Wu ZY, Kuo CC, Chang CY, Lu PY, Chen CM, Hsieh HP, Chang JY. J. Med. Chem. 2008; 51: 4351
  • 51 Balint J, Egri G, Fogassy E, Böcskei Z, Simon K, Gajaryband A, Friesz A. Tetrahedron: Asymmetry 1999; 10: 1079
  • 52 Ros A, Estepa B, López-Rodríguez R, Álvarez E, Fernández R, Lassaletta J. Angew. Chem. Int. Ed. 2011; 50: 11724