Klin Monbl Augenheilkd 2021; 238(11): 1197-1211
DOI: 10.1055/a-1654-0632
Übersicht

Zentrale Okulomotorikstörungen: klinische Diagnose, anatomische Zuordnung, Syndrome und zugrunde liegende Erkrankungen

Article in several languages: English | deutsch
1   Neurologische Klinik der Ludwig-Maximilians-Universität München, Deutschland
2   Deutsches Schwindel- und Gleichgewichtszentrum der Ludwig-Maximilians-Universität München, Deutschland
,
Dominik Straumann
3   Klinik für Neurologie, Universitätsspital Zürich, Schweiz
,
Christoph Helmchen
4   Neurologische Klinik der Universität zu Lübeck, Deutschland
› Author Affiliations

Zusammenfassung

Der Schlüssel zur Diagnose von Augenbewegungsstörungen ist eine systematische klinische Untersuchung aller Arten von Augenbewegungen. Diese ist wie ein Fenster in Hirnstamm und Kleinhirn, selbst wenn die Bildgebung unauffällig ist. Die Untersuchung umfasst die folgenden Aspekte: Augenposition, Untersuchung auf einen Spontannystagmus, Motilität, Blickfolge, Blickhaltefunktion, Sakkaden, Vergenzreaktion, optokinetischer Nystagmus, Funktion des vestibulookulären Reflexes (VOR) sowie die Fixationssuppression des VOR. Anatomisch relevante Strukturen sind Mesenzephalon, Pons, Medulla oblongata, Zerebellum und sehr selten der Kortex. Topografisch-anatomisch gelten die folgenden einfachen klinischen Regeln: vertikale und torsionelle Augenbewegungen werden vorwiegend im Mesenzephalon (relevante Strukturen sind der rostrale interstitielle Kern des Fasciculus longitudinalis medialis und der interstitielle Nucleus Cajal) und horizontale Augenbewegungen im Pons (relevante Struktur ist z. B. die paramediane pontine Formatio reticularis) generiert. Somit finden sich z. B. bei Mittelhirnläsionen eine vertikale Sakkaden- oder Blickparese und ein isolierter vertikaler Blickrichtungsnystagmus und bei Läsionen im Bereich des Pons entsprechende horizontale Störungen sowie eine internukleäre Ophthalmoplegie. Läsionen der lateralen Medulla oblongata (Wallenberg-Syndrom) führen zu typischen Befunden mit Ocular Tilt Reaction, Fixationsnystagmus und Sakkadendysmetrie. Das Zerebellum spielt eine Rolle bei praktisch allen Augenbewegungen; typische klinische Zeichen sind eine allseitige Blickfolgesakkadierung, Blickrichtungsnystagmus oder dysmetrische Sakkaden. Wichtig für die Beurteilung der zugrunde liegenden Erkrankungen ist der Verlauf: akut bei Infarkten, subakut bei entzündlichen Erkrankungen, Thiaminmangel oder unerwünschter Medikamentenwirkung sowie chronisch progredient bei hereditären Erkrankungen wie Niemann-Pick Typ C mit typischer, zunächst vertikaler und dann horizontaler Sakkadenparese oder neurodegenerativen Erkrankungen wie der progressiven supranukleären Blickparese. Die Behandlung hängt von der zugrunde liegenden Erkrankung ab. Abschließend: in einem begleitenden Artikel werden in dieser Zeitschrift die häufigsten und klinisch relevanten Nystagmusformen wie z. B. Downbeat-, Upbeat-, Fixationspendelnystagmus, infantiler oder periodisch-alternierender Nystagmus und deren klinische Untersuchung dargestellt, sodass auf diese hier nicht detailliert eingegangen wird, wobei es bewusst Überlappungen gibt.



Publication History

Received: 13 September 2021

Accepted: 22 September 2021

Article published online:
16 November 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Leigh RJ, Zee D. The Neurology of Eye Movements. 5th ed. Oxford, New York: Oxford University Press; 2015
  • 2 Strupp M, Brandt T, Dieterich M. Vertigo – Leitsymptom Schwindel. 3. Aufl.. Heidelberg: Springer; 2022
  • 3 Strupp M, Kremmyda O, Adamczyk C. et al. Central ocular motor disorders, including gaze palsy and nystagmus. J Neurol 2014; 261 (Suppl. 02) S542-S558
  • 4 Feil K, Strobl R, Schindler A. et al. What Is Behind Cerebellar Vertigo and Dizziness?. Cerebellum 2019; 18: 320-332
  • 5 Buttner U, Buttner-Ennever JA, Rambold H. et al. The contribution of midbrain circuits in the control of gaze. Ann N Y Acad Sci 2002; 956: 99-110
  • 6 Helmchen C, Glasauer S, Bartl K. et al. Contralesionally beating torsional nystagmus in a unilateral rostral midbrain lesion. Neurology 1996; 47: 482-486
  • 7 Eggink H, Brandsma R, van der Hoeven JH. et al. Teaching Video NeuroImages: The „round the houses“ sign as a clinical clue for Niemann-Pick disease type C. Neurology 2016; 86: e202
  • 8 Bremova-Ertl T, Abel L, Walterfang M. et al. A cross-sectional, prospective ocular motor study in 72 patients with Niemann-Pick disease type C. Eur J Neurol 2021; 28: 3040-3050 DOI: 10.1111/ene.14955.
  • 9 Fearon C, Field R, Donlon E. et al. The “round the houses” sign and “zig-zag” sign in progressive supranuclear palsy and other conditions. Parkinsonism Relat Disord 2020; 81: 94-95
  • 10 Helmchen C, Rambold H, Kempermann U. et al. Localizing value of torsional nystagmus in small midbrain lesions. Neurology 2002; 59: 1956-1964
  • 11 Helmchen C, Rambold H, Fuhry L. et al. Deficits in vertical and torsional eye movements after uni- and bilateral muscimol inactivation of the interstitial nucleus of Cajal of the alert monkey. Exp Brain Res 1998; 119: 436-452
  • 12 Rambold H, Kompf D, Helmchen C. Convergence retraction nystagmus: a disorder of vergence?. Ann Neurol 2001; 50: 677-681
  • 13 Pehere NK, Gofer K. Clinical Reasoning: A 48-year-old man presenting with diplopia. Neurology 2020; DOI: 10.1212/WNL.0000000000011007.
  • 14 Deleu D, Buisseret T, Ebinger G. Vertical one-and-a-half syndrome. Supranuclear downgaze paralysis with monocular elevation palsy. Arch Neurol 1989; 46: 1361-1363
  • 15 Pierrot-Deseilligny C, Rosa A, Masmoudi K. et al. Saccade deficits after a unilateral lesion affecting the superior colliculus. J Neurol Neurosurg Psychiatry 1991; 54: 1106-1109
  • 16 Bremova-Ertl T, Sztatecsny C, Brendel M. et al. Clinical, ocular motor, and imaging profile of Niemann-Pick type C heterozygosity. Neurology 2020; 94: e1702-e1715
  • 17 Rowe DB, Lewis V, Needham M. et al. Novel prion protein gene mutation presenting with subacute PSP-like syndrome. Neurology 2007; 68: 868-870
  • 18 Averbuch-Heller L, Paulson GW, Daroff RB. et al. Whippleʼs disease mimicking progressive supranuclear palsy: the diagnostic value of eye movement recording. J Neurol Neurosurg Psychiatry 1999; 66: 532-535
  • 19 Ahn JH, Kim M, Kim JS. et al. Midbrain atrophy in patients with presymptomatic progressive supranuclear palsy-Richardsonʼs syndrome. Parkinsonism Relat Disord 2019; 66: 80-86
  • 20 Averbuch-Heller L, Gordon C, Zivotofsky A. et al. Small vertical saccades have normal speeds in progressive supranuclear palsy (PSP). Ann N Y Acad Sci 2002; 956: 434-437
  • 21 Luschei ES, Fuchs AF. Activity of brain stem neurons during eye movements of alert monkeys. J Neurophysiol 1972; 35: 445-461
  • 22 Brodal P. The cortical projection to the nucleus reticularis tegmenti pontis in the rhesus monkey. Exp Brain Res 1980; 38: 19-27
  • 23 Rambold H, Neumann G, Helmchen C. Vergence deficits in pontine lesions. Neurology 2004; 62: 1850-1853
  • 24 Joshua M, Medina JF, Lisberger SG. Diversity of neural responses in the brainstem during smooth pursuit eye movements constrains the circuit mechanisms of neural integration. J Neurosci 2013; 33: 6633-6647
  • 25 Distler C, Mustari MJ, Hoffmann KP. Cortical projections to the nucleus of the optic tract and dorsal terminal nucleus and to the dorsolateral pontine nucleus in macaques: a dual retrograde tracing study. J Comp Neurol 2002; 444: 144-158
  • 26 Glickstein M, Gerrits N, Kralj-Hans I. et al. Visual pontocerebellar projections in the macaque. J Comp Neurol 1994; 349: 51-72
  • 27 Ono S, Das VE, Mustari MJ. Gaze-related response properties of DLPN and NRTP neurons in the rhesus macaque. J Neurophysiol 2004; 91: 2484-2500
  • 28 Uchino Y, Sasaki M, Isu N. et al. Second-order vestibular neuron morphology of the extra-MLF anterior canal pathway in the cat. Exp Brain Res 1994; 97: 387-396
  • 29 Tilikete C, Milea D, Pierrot-Deseilligny C. Upbeat nystagmus from a demyelinating lesion in the caudal pons. J Neuroophthalmol 2008; 28: 202-206
  • 30 Strupp M, Frenzel C, Thorsteinsdottir J. Teaching Video NeuroImages: Almost no eye movements to the left. Neurology 2021; 96: e2353-e2354 DOI: 10.1212/WNL.0000000000011234.
  • 31 Zee DS, Hain TC, Carl JR. Abduction nystagmus in internuclear ophthalmoplegia. Ann Neurol 1987; 21: 383-388
  • 32 Frohman TC, Galetta S, Fox R. et al. Pearls & Oy-sters: The medial longitudinal fasciculus in ocular motor physiology. Neurology 2008; 70: e57-e67
  • 33 Prasad S, Galetta SL. Eye movement abnormalities in multiple sclerosis. Neurol Clin 2010; 28: 641-655
  • 34 Zwergal A, Cnyrim C, Arbusow V. et al. Unilateral INO is associated with ocular tilt reaction in pontomesencephalic lesions: INO plus. Neurology 2008; 71: 590-593
  • 35 Zee DS. Internuclear ophthalmoplegia: pathophysiology and diagnosis. Baillieres Clin Neurol 1992; 1: 455-470
  • 36 Choi JH, Jung NY, Kim MJ. et al. Pure upbeat nystagmus in association with bilateral internuclear ophthalmoplegia. J Neurol Sci 2012; 317: 148-150
  • 37 Wall M, Wray SH. The one-and-a-half syndrome–a unilateral disorder of the pontine tegmentum: a study of 20 cases and review of the literature. Neurology 1983; 33: 971-980
  • 38 Sharpe JA, Rosenberg MA, Hoyt WF. et al. Paralytic pontine exotropia. A sign of acute unilateral pontine gaze palsy and internuclear ophthalmoplegia. Neurology 1974; 24: 1076-1081
  • 39 Brandt T, Dieterich M. Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol 1994; 36: 337-347
  • 40 Dieterich M, Brandt T. Wallenbergʼs syndrome: lateropulsion, cyclorotation, and subjective visual vertical in thirty-six patients. Ann Neurol 1992; 31: 399-408
  • 41 Cohen B, Komatsuzaki A, Bender MB. Electrooculographic syndrome in monkeys after pontine reticular formation lesions. Arch Neurol 1968; 18: 78-92
  • 42 Johnston JL, Sharpe JA. Sparing of the vestibulo-ocular reflex with lesions of the paramedian pontine reticular formation. Neurology 1989; 39: 876
  • 43 Ahn BY, Choi KD, Kim JS. et al. Impaired ipsilateral smooth pursuit and gaze-evoked nystagmus in paramedian pontine lesion. Neurology 2007; 68: 1436
  • 44 Rambold H, Sander T, Neumann G. et al. Palsy of “fast” and “slow” vergence by pontine lesions. Neurology 2005; 64: 338-340
  • 45 Buttner-Ennever JA, Buttner U. Neuroanatomy of the ocular motor pathways. Baillieres Clin Neurol 1992; 1: 263-287
  • 46 Chubb MC, Fuchs AF. Contribution of y group of vestibular nuclei and dentate nucleus of cerebellum to generation of vertical smooth eye movements. J Neurophysiol 1982; 48: 75-99
  • 47 Pierrot-Deseilligny C, Milea D. Vertical nystagmus: clinical facts and hypotheses. Brain 2005; 128: 1237-1246
  • 48 Cannon SC, Robinson DA. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 1987; 57: 1383-1409
  • 49 McCrea RA. Neuroanatomy of the oculomotor system. The nucleus prepositus. Rev Oculomot Res 1988; 2: 203-223
  • 50 Barmack NH. Inferior olive and oculomotor system. Prog Brain Res 2006; 151: 269-291
  • 51 Shaikh AG, Hong S, Liao K. et al. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. Brain 2010; 133: 923-940
  • 52 Buttner-Ennever JA, Buttner U. Neuroanatomy of the oculomotor system. The reticular formation. Rev Oculomot Res 1988; 2: 119-176
  • 53 Buttner-Ennever JA, Horn AK. Pathways from cell groups of the paramedian tracts to the floccular region. Ann N Y Acad Sci 1996; 781: 532-540
  • 54 Voogd J, Barmack NH. Oculomotor cerebellum. Prog Brain Res 2006; 151: 231-268
  • 55 Ogawa K, Suzuki Y, Oishi M. et al. Clinical study of 46 patients with lateral medullary infarction. J Stroke Cerebrovasc Dis 2015; 24: 1065-1074
  • 56 Rambold H, Helmchen C. Spontaneous nystagmus in dorsolateral medullary infarction indicates vestibular semicircular canal imbalance. J Neurol Neurosurg Psychiatry 2005; 76: 88-94
  • 57 Kommerell G, Hoyt WF. Lateropulsion of saccadic eye movements. Electro-oculographic studies in a patient with Wallenbergʼs syndrome. Arch Neurol 1973; 28: 313-318
  • 58 Tilikete C, Koene A, Nighoghossian N. et al. Saccadic lateropulsion in Wallenberg syndrome: a window to access cerebellar control of saccades?. Exp Brain Res 2006; 174: 555-565
  • 59 Choi KD, Jung DS, Park KP. et al. Bowtie and upbeat nystagmus evolving into hemi-seesaw nystagmus in medial medullary infarction: possible anatomic mechanisms. Neurology 2004; 62: 663-665
  • 60 Kim JS, Moon SY, Park SH. et al. Ocular lateropulsion in Wallenberg syndrome. Neurology 2004; 62: 2287
  • 61 Kim JS, Choi KD, Oh SY. et al. Medial medullary infarction: abnormal ocular motor findings. Neurology 2005; 65: 1294-1298
  • 62 Choi JH, Seo JD, Choi YR. et al. Inferior cerebellar peduncular lesion causes a distinct vestibular syndrome. Eur J Neurol 2015; 22: 1062-1067
  • 63 Tilikete C, Desestret V. Hypertrophic Olivary Degeneration and Palatal or Oculopalatal Tremor. Front Neurol 2017; 8: 302
  • 64 Lee SU, Park SH, Park JJ. et al. Dorsal Medullary Infarction: Distinct Syndrome of Isolated Central Vestibulopathy. Stroke 2015; 46: 3081-3087
  • 65 Kim SH, Zee DS, du Lac S. et al. Nucleus prepositus hypoglossi lesions produce a unique ocular motor syndrome. Neurology 2016; 87: 2026-2033
  • 66 Nakamagoe K, Shimizu K, Koganezawa T. et al. Downbeat nystagmus due to a paramedian medullary lesion. J Clin Neurosci 2012; 19: 1597-1599
  • 67 Nagao S, Kitamura T, Nakamura N. et al. Location of efferent terminals of the primate flocculus and ventral paraflocculus revealed by anterograde axonal transport methods. Neurosci Res 1997; 27: 257-269
  • 68 Zee DS, Yamazaki A, Butler PH. et al. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 1981; 46: 878-899
  • 69 Noda H, Suzuki DA. The role of the flocculus of the monkey in fixation and smooth pursuit eye movements. J Physiol 1979; 294: 335-348
  • 70 Buttner U, Waespe W. Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Exp Brain Res 1984; 55: 97-104
  • 71 Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 1976; 39: 954-969
  • 72 Walker MF, Zee DS. Cerebellar disease alters the axis of the high-acceleration vestibuloocular reflex. J Neurophysiol 2005; 94: 3417-3429
  • 73 Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 1980; 44: 1058-1076
  • 74 Yamada J, Noda H. Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey. J Comp Neurol 1987; 265: 224-241
  • 75 Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 1990; 302: 330-348
  • 76 Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol 1993; 70: 1723-1740
  • 77 Kojima Y, Soetedjo R, Fuchs AF. Effect of inactivation and disinhibition of the oculomotor vermis on saccade adaptation. Brain Res 2011; 1401: 30-39
  • 78 Nitta T, Akao T, Kurkin S. et al. Vergence eye movement signals in the cerebellar dorsal vermis. Prog Brain Res 2008; 171: 173-176
  • 79 Yakushin SB, Raphan T, Cohen B. Coding of Velocity Storage in the Vestibular Nuclei. Front Neurol 2017; 8: 386
  • 80 Beh SC, Frohman TC, Frohman EM. Cerebellar Control of Eye Movements. J Neuroophthalmol 2017; 37: 87-98
  • 81 Kheradmand A, Zee DS. Cerebellum and ocular motor control. Front Neurol 2011; 2: 53
  • 82 Park HK, Kim JS, Strupp M. et al. Isolated floccular infarction: impaired vestibular responses to horizontal head impulse. J Neurol 2013; 260: 1576-1582
  • 83 Versino M, Hurko O, Zee DS. Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain 1996; 119: 1933-1950
  • 84 Sander T, Sprenger A, Neumann G. et al. Vergence deficits in patients with cerebellar lesions. Brain 2009; 132: 103-115
  • 85 Selhorst JB, Stark L, Ochs AL. et al. Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. Brain 1976; 99: 509-522
  • 86 Hain TC, Zee DS, Maria BL. Tilt suppression of vestibulo-ocular reflex in patients with cerebellar lesions. Acta Otolaryngol 1988; 105: 13-20
  • 87 Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic-vestibular system. Ann N Y Acad Sci 1981; 374: 619-635
  • 88 Minagar A, Sheremata WA, Tusa RJ. Perverted head-shaking nystagmus: a possible mechanism. Neurology 2001; 57: 887-889
  • 89 Strupp M. Perverted head-shaking nystagmus: two possible mechanisms. J Neurol 2002; 249: 118-119
  • 90 Han WG, Yoon HC, Kim TM. et al. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings. J Audiol Otol 2016; 20: 85-89
  • 91 Walker MF, Tian J, Shan X. et al. Lesions of the cerebellar nodulus and uvula impair downward pursuit. J Neurophysiol 2008; 100: 1813-1823
  • 92 Moster ML, Schatz NJ, Savino PJ. et al. Alternating skew on lateral gaze (bilateral abducting hypertropia). Ann Neurol 1988; 23: 190-192
  • 93 Kim HA, Yi HA, Lee H. Apogeotropic central positional nystagmus as a sole sign of nodular infarction. Neurol Sci 2012; 33: 1189-1191
  • 94 Tarnutzer AA, Wichmann W, Straumann D. et al. The cerebellar nodulus: perceptual and ocular processing of graviceptive input. Ann Neurol 2015; 77: 343-347
  • 95 Mossman S, Halmagyi GM. Partial ocular tilt reaction due to unilateral cerebellar lesion. Neurology 1997; 49: 491-493
  • 96 Cooper SA, Joshi AC, Seenan PJ. et al. Akinetopsia: acute presentation and evidence for persisting defects in motion vision. J Neurol Neurosurg Psychiatry 2012; 83: 229-230
  • 97 Averbuch-Heller L, Leigh RJ, Mermelstein V. et al. Ptosis in patients with hemispheric strokes. Neurology 2002; 58: 620-624
  • 98 Rambold H, Moser A, Zurowski B. et al. Saccade initiation in ocular motor apraxia. J Neurol 2006; 253: 950-952
  • 99 Cazzoli D, Jung S, Nyffeler T. et al. The role of the right frontal eye field in overt visual attention deployment as assessed by free visual exploration. Neuropsychologia 2015; 74: 37-41
  • 100 Schweyer K, Busche MA, Hammes J. et al. Pearls & Oy-sters: Ocular motor apraxia as essential differential diagnosis to supranuclear gaze palsy: Eyes up. Neurology 2018; 90: 482-485
  • 101 Pierrot-Deseilligny C, Gautier JC, Loron P. Acquired ocular motor apraxia due to bilateral frontoparietal infarcts. Ann Neurol 1988; 23: 199-202
  • 102 Panouilleres M, Frismand S, Sillan O. et al. Saccades and eye-head coordination in ataxia with oculomotor apraxia type 2. Cerebellum 2013; 12: 557-567