CC BY-NC-ND 4.0 · SynOpen 2021; 05(02): 145-151
DOI: 10.1055/a-1523-6428
paper

Enantiodivergent Synthesis of Halofuginone by Candida antarctica Lipase B (CAL-B)-Catalyzed Kinetic Resolution in Cyclopentyl Methyl Ether (CPME)

a   Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
,
b   Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
,
c   Huvepharma Italia, Via Lepetit 142, 12075 Garessio (CN), Italy
,
Dina Scarpi
a   Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
,
Cristina Prandi
b   Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
,
a   Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
› Author Affiliations
This research was supported by Huvepharma® Italia and by the University of Florence.


Abstract

The synthesis of both enantiomers of a key intermediate in the synthesis of halofuginone was accomplished by a Candida antarctica lipase B (CAL-B)-catalyzed kinetic resolution of the corresponding racemate. When the resolution was carried out in the versatile solvent cyclopentyl methyl ether (CPME) using p-chlorophenylbutyrate (PCPB) as the acylating reagent, the highest enantiomeric ratio (E) values were measured, and highly enantioenriched (95% ee) compounds could be obtained in a single iteration. As an example, one of the two enantiomers was used as a starting material to prepare (+)-halofuginone in a three-step procedure.

Supporting Information



Publication History

Received: 04 May 2021

Accepted after revision: 14 May 2021

Accepted Manuscript online:
07 June 2021

Article published online:
17 June 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Koepfli JB, Mead JF, Brockman JA. Jr. J. Am. Chem. Soc. 1947; 69: 1837
    • 1b Koepfli JB, Mead JF, Brockman JA. Jr. J. Am. Chem. Soc. 1949; 71: 1048
    • 2a Hirai S, Kikuchi H, Kim H.-S, Begum K, Wataya Y, Tasaka H, Miyazawa Y, Yamamoto K, Oshima Y. J. Med. Chem. 2003; 46: 4351
    • 2b Zhu S, Meng L, Zhang Q, Wei L. Bioorg. Med. Chem. Lett. 2006; 16: 1854
    • 2c Kikuchi H, Yamamoto K, Horoiwa S, Hirai S, Kasahara R, Hariguchi N, Matsumoto M, Oshima Y. J. Med. Chem. 2006; 49: 4698
    • 2d Zhu S, Zhang Q, Gudise C, Wei L, Smith E, Zeng Y. Bioorg. Med. Chem. 2009; 17: 4496
    • 4a Granot I, Halevy O, Hurwitz S, Pines M. Biochim. Biophys. 1993; 1156: 107
    • 4b Pines M. World J. Gastroenterol. 2014; 20: 14778
    • 4c Yavas G, Calik M, Calik G, Yavas C, Ata O, Esme H. Med. Hypotheses 2013; 80: 357
    • 5a Lamora A, Mullard M, Amiaud J, Brion R, Heymann D, Redini F, Verrecchia F. Oncotarget 2015; 6: 14413
    • 5b Cook JA, Choudhuri R, Degraff W, Gamson J, Mitchell JB. Cancer Lett. 2010; 289: 119
    • 5c Yee KO, Connolly CM, Pines M, Lawler J. Cancer Biol. Ther. 2006; 5: 218
  • 6 Casey NH, Crosley RI, Smith GA. J. S. Afr. Vet. Assoc. 1992; 63: 16
  • 7 Linder MR, Heckeroth AR, Najdrowski M, Daugschies A, Schollmeyer D, Miculka C. Bioorg. Med. Chem. Lett. 2007; 17: 4140
  • 8 The absolute configuration of febrifugine was determined in 1999 by its total synthesis. See: Kobayashi S, Ueno M, Suzuki R, Ishitani H, Kim H.-S, Wataya Y. J. Org. Chem. 1999; 64: 6833
  • 9 McLaughlin NP, Evans P. J. Org. Chem. 2010; ; and references therein for a list of papers published prior to 2010 75: 518

    • For a review, see:
    • 10a Smullen S, McLaughlin NP, Evans P. Bioorg. Med. Chem. 2018; 26: 2199

    • See also:
    • 10b Zhang J, Yao Q, Liu Z. Molecules 2017; 22: 1086 ; and references therein
  • 11 Perali RS, Bandi A. Tetrahedron Lett. 2020; 61: 152151
  • 12 Smullen S, Evans P. Tetrahedron Lett. 2018; 59: 1627
  • 13 Pansare SV, Paul EK. Synthesis 2013; 45: 1863
  • 14 Smullen S, Evans P. Tetrahedron 2017; 73: 5493
    • 15a Begliomini S, Sernissi L, Scarpi D, Occhiato EG. Eur. J. Org. Chem. 2014; 5448
    • 15b Occhiato EG, Casini A, Guarna A, Scarpi D. Eur. J. Org. Chem. 2011; 6544
    • 15c Bartali L, Casini A, Guarna A, Occhiato EG, Scarpi D. Eur. J. Org. Chem. 2010; 5831
    • 15d Occhiato EG, Scarpi D, Guarna A, Tabasso S, Deagostino A, Prandi C. Synthesis 2009; 3611
    • 15e Bartali L, Scarpi D, Guarna A, Prandi C, Occhiato EG. Synlett 2009; 913
    • 15f Scarpi D, Avataneo O, Prandi C, Venturello P, Occhiato EG. Synthesis 2012; 44: 3688
    • 15g Scarpi D, Bartali L, Casini A, Occhiato EG. Eur. J. Org. Chem. 2012; 2597
    • 15h Scarpi D, Bartali L, Casini A, Occhiato EG. Eur. J. Org. Chem. 2013; 1306
    • 15i Sernissi L, Petrović M, Scarpi D, Guarna A, Trabocchi A, Bianchini F, Occhiato EG. Chem. Eur. J. 2014; 20: 11187
    • 15j Scarpi D, Begliomini S, Prandi C, Oppedisano A, Deagostino A, Gómez-Bengoa E, Fiser B, Occhiato EG. Eur. J. Org. Chem. 2015; 3251
  • 16 Yoshimura Y, Ohara C, Imahori T, Saito Y, Kato A, Miyauchi S, Adachi I, Takahata H. Bioorg. Med. Chem. 2008; 16: 8273
  • 17 de Gonzalo G, Alcántara AR, de María PD. ChemSusChem 2019; 12: 2083
  • 18 Takeuchi Y, Azuma K, Oshige M, Abe H, Nishioka H, Sasaki K, Harayama T. Tetrahedron 2003; 59: 1639
  • 19 Schnaars C, Hansen T. Org. Lett. 2012; 14: 2794
    • 20a Sukemoto S, Oshige M, Sato M, Mimura K.-i, Nishioka H, Abe H, Harayama T, Takeuchi Y. Synthesis 2008; 3081
    • 20b When we attempted a Wittig olefination, we found that two consecutive chromatographic separations were necessary to obtain pure 3a; one on silica gel to remove 12 and the excess of ylide, and a second one on alumina to remove triphenylphosphine oxide.
    • 21a Akai S, Tanimoto K, Kita Y. Angew. Chem. Int. Ed. 2004; 43: 1407
    • 21b Rotticci D, Norin T, Hult K. Org. Lett. 2000; 2: 1373
    • 21c Orrenius C, Norin T, Hult K, Carrea G. Tetrahedron: Asymmetry 1995; 6: 3023
  • 22 Secundo F, Carrea G, Soregaroli C, Varinelli D, Morrone R. Biotechnol. Bioeng. 2001; 73: 157

    • LogP is well known to influence enzymatic activity. See, for example:
    • 23a Zieniuk B, Fabiszewska A, Białecka-Florjańczyk E. Bioprocess Biosyst Eng. 2020; 43: 605
    • 23b Inagaki T, Tasada K, Kayahara H. Biosci., Biotechnol., Biochem. 1994; 58: 1439
    • 24a Pätzold M, Siebenhaller S, Kara S, Liese A, Syldatk C, Holtmann D. Trends Biotechnol. 2019; 37: 943
    • 24b Aranda C, de Gonzalo G. Molecules 2020; 25: 3016
    • 24c Guajardo N, Domínguez deMaría P. ChemCatChem 2019; 11: 3128
    • 24d Panić M, Radović M, Maros I, Tušek AJ, Bubalo MC, Redovniković IR. Process Biochem. 2021; 102: 1
  • 25 Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. Process Biochem. 2012; 47: 2081
  • 26 The enantioselectivity in an enzymatic kinetic resolution process is expressed by the enantiomeric ratio E, which is the ratio between the specificity constants (kcat/KM) of the enzyme for the competing R and S enantiomers: E = (kcat/KM)R/(kcat/KM)S. E was calculated by using the formula E = ln[(1 - ees)/(1 + ees/eep)]/ln [(1 + ees)/(1 + ees/eep)]. See: Rakels JL. L, Straathof AJ. J, Heijnen J. Enzyme Microb. Technol. 1993; 15: 1051
  • 27 Stauch B, Fisher SJ, Cianci M. J. Lipid Res. 2015; 56: 2348
  • 28 Zieniuk B, Fabiszewska A, Białecka-Florjańczyk E. Bioprocess Biosyst. Eng. 2020; 43: 605
  • 29 Petrenz A, de María PD, Ramanathan A, Hanefeld U, Ansorge-Schumacher MB, Kara S. J. Mol. Catal. B: Enzym. 2015; 114: 42
  • 30 Léonard-Nevers V, Marton Z, Lamare S, Hult K, Graber M. J. Mol. Catal. B: Enzym. 2009; 59: 90