CC BY-NC-ND 4.0 · SynOpen 2021; 05(02): 123-133
DOI: 10.1055/a-1480-9837
paper

Synthesis of Spiro Pyrazolone-Oxindole and Bicyclic Pyrazolone Derivatives via Solvent-Dependent Regioselective Aza-1,4/1,6-Michael and Intramolecular Cycloaddition under Catalyst-Free Conditions

Kota Sathish
,
Sakkani Nagaraju
,
K.S. thanks DST for an INSPIRE fellowship. S.N. thanks UGC-New Delhi for a Fellowship. D.K. thanks DST (SERB), New Delhi for financial support (SB/FT/CS-136/2012 and SB/EMEQ-103/2014).


Abstract

A solvent-dependent, highly regioselective [3+2]-cyclo­addition reaction of isoxazole-styrenes and azomethine imines under catalyst-free conditions is reported, furnishing a library of pyrazolone–spirooxindole hybrids. Good regioselectivity for the isomeric structures was achieved by the reaction of isoxazole-styrene and azomethine imine in different solvents and temperatures. The developed method was extended for the synthesis of tri-substituted dinitrogen-fused pyrazolones by using a 1,6-Michael addition reaction. Furthermore, the isoxazole moiety was converted into a carboxylic acid as a model study via ring opening.

Supporting Information



Publication History

Received: 22 March 2021

Accepted after revision: 12 April 2021

Publication Date:
13 April 2021 (online)

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Babu SA, Padmavathi R, Aslam NA, Rajkumar V. Stud. Nat. Prod. Chem. 2015; 46: 227
    • 1b Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 1c Cheng D, Ishihara Y, Tan B, Barbas III CF. ACS Catal. 2014; 4: 743
    • 1d Zhou L.-M, Qu R.-Y, Yang G.-F. Expert Opin. Drug Discovery 2020; 15: 603
    • 2a Zhao Z, Dai X, Li C, Wang X, Tian J, Feng Y, Xie J, Ma C, Nie Z, Fan P, Qian M, He X, Wu S, Zhang Y, Zheng X. Eur. J. Med. Chem. 2020; 186: 111893
    • 2b Mrongovius R, Neugebauer M, Rucker G. Eur. J. Med. Chem. 1984; 19: 161
    • 2c Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M. Eur. J. Med. Chem. 2016; 120: 170
    • 4a Pezdirc L, Jovanovski V, Bevk D, Jakše R, Pirc S, Meden A, Stanovnik B, Svete J. Tetrahedron 2005; 61: 3977
    • 4b Boyd DB. J. Med. Chem. 1993; 36: 1443
    • 4c Kamata M, Yamashita T, Kina A, Tawada M, Endo S, Mizukami A, Sasaki M, Tani A, Nakano Y, Watanabe Y, Furuyama N, Funami M, Amano N, Fukatsu K. Bioorg. Med. Chem. Lett. 2012; 22: 4769
    • 4d Yao S, Gallenkamp D, Wölfel K, Lüke B, Schindler M, Scherkenbeck J. Bioorg. Med. Chem. 2011; 19: 4669
    • 4e Clark MP, Laughlin SK, Laufersweiler MJ, Bookland RG, Brugel TA, Golebiowski A, Sabat MP, Townes JA, VanRens JC, Djung JF, Natchus MG, De B, Hsieh LC, Xu SC, Walter RL, Mekel MJ, Heitmeyer SA, Brown KK, Juergens K, Taiwo YO, Janusz MJ. J. Med. Chem. 2004; 47: 2724
    • 5a Muehlebach M, Boeger M, Cederbaum F, Cornes D, Friedmann AA, Glock J, Niderman T, Stoller A, Wagner T. Bioorg. Med. Chem. 2009; 17: 4241
    • 5b Varvounis G, Fiamegos Y, Pilidis G. Adv. Heterocycl. Chem. 2001; 80: 75
    • 6a Funken N, Zhang Y.-Q, Gansӓuer A. Chem. Eur. J. 2017; 23: 19
    • 6b Engler TA, Chai W, Lynch KO. Jr. Tetrahedron Lett. 1995; 36: 7003
    • 6c Zhan G, Du W, Chen Y.-C. Chem. Soc. Rev. 2017; 46: 1675
    • 6d Zhou Z, Wang Z.-X, Zhou Y.-C, Xiao W, Ouyang Q, Du W, Chen Y.-C. Nat. Chem. 2017; 9: 590
    • 6e Nagaraju S, Liu S, Liu J, Yang S, Liu R, Chen Z, Paplal B, Fang X. Org. Lett. 2019; 21: 10075
    • 6f Meng JP, Wang WW, Chen YL, Bera S, Wu J. Org. Chem. Front. 2020; 7: 267
    • 6g Chavan SP, Varadwaj GB, Parida KM, Bhanage BM. ChemCatChem 2016; 8: 2649
    • 7a Merino P, Tejero T, Díez-Martínez A, Gültekin Z. Eur. J. Org. Chem. 2011; 6567
    • 7b Chen YR, Zhan G, Du W, Chen Y.-C. Adv. Synth. Catal. 2016; 358: 3759
    • 7c Tong M, Zhang Y, Qin C, Fu Y, Liu Y, Li H, Wang W. Org. Chem. Front. 2018; 5: 2945
    • 7d Qiu G, Kuang Y, Wu J. Adv. Synth. Catal. 2014; 356: 3483
    • 7e Nájera C, Sansano JM, Yus M. Org. Biomol. Chem. 2015; 13: 8596
    • 8a Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res. 2014; 47: 1296
    • 8b Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
    • 8c Bdiri B, Zhao B.-J, Zhou Z.-M. Tetrahedron: Asymmetry 2017; 28: 876
    • 8d Vishwanath M, Sivamuthuraman K, Kesavan V. Chem. Commun. 2016; 52: 12314
    • 9a Hong L, Kai M, Wu C, Sun W, Zhu G, Li G, Yao X, Wang R. Chem. Commun. 2013; 49: 6713
    • 9b Yin C, Lin L, Zhang D, Feng J, Liu X, Feng X. J. Org. Chem. 2015; 80: 9691
    • 9c Zhang D, Zhang D.-M, Xu G.-Y, Sun J.-T. Chin. Chem. Lett. 2015; 26: 301
    • 9d Lu Y.-L, Sun J, Jiang Y.-H, Yan C.-G. RSC Adv. 2016; 6: 50471
    • 10a Zhang Y, Wei B.-W, Lin H, Zhang L, Liu J.-X, Luo H.-Q, Fan X.-L. Green Chem. 2015; 17: 3266
    • 10b Nagaraju S, Satyanarayana N, Paplal B, Vasu AK, Kanvah S, Sridhar B, Sripadi P, Kashinath D. RSC Adv. 2015; 5: 94474
    • 10c Lin B, Zhang W.-H, Wang D.-D, Gong Y, Wei Q.-D, Liu X.-L, Feng T.-T, Zhou Y, Yuan W.-C. Tetrahedron 2017; 73: 5176
    • 10d Nagaraju S, Sathish K, Satyanarayana N, Paplal B, Kashinath D. J. Heterocycl. Chem. 2020; 57: 469
    • 10e Nagaraju S, Satyanarayana N, Paplal B, Vasu AK, Kanvah S, Sridhar B, Sripadi P, Kashinath D. RSC Adv. 2015; 5: 81768
    • 10f Zhang C, Han Y, Ye S. Chem. Commun. 2019; 55: 7966
    • 11a Chen S, Wang G.-L, Xu S.-W, Tian M.-Y, Zhang M, Liu X.-L, Yuan W.-C. Org. Biomol. Chem. 2019; 17: 6551
    • 11b Liu X.-L, Gong Y, Chen S, Zuo X, Yao Z, Zhou Y. Org. Chem. Front. 2019; 6: 1603
  • 12 Kartikey KD. D, Reddy MS, Chowhan LR. Tetrahedron Lett. 2020; 61: 152664
  • 13 Nagaraju S, Sathish K, Paplal B, Satyanarayana N, Kashinath D. New J. Chem. 2019; 43: 14045