Planta Med 2021; 87(07): 511-527
DOI: 10.1055/a-1377-2596
Biological and Pharmacological Activity
Reviews

The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases

Zhengqi Cheng
1   Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
,
Yue Li
1   Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
,
Xue Zhu
2   Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
,
Ke Wang
2   Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
,
Youmna Ali
1   Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
,
Wenying Shu
3   Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
,
Ting Zhang
4   Save Sight Institute, The University of Sydney, Sydney, Australia
,
Ling Zhu
4   Save Sight Institute, The University of Sydney, Sydney, Australia
,
Michael Murray
5   Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
,
1   Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
› Author Affiliations
Supported by: Equity fellowship of the University of Sydney
Supported by: University of Sydney-Wepon post-graduate scholarship
Supported by: Young Talentʼs Subsidy Project in Science and Education of the Department of Public Health of Jiangsu Province QNRC2016627
Supported by: Six Talent Peaks Project in Jiangsu Province WSW-047
Supported by: Six-one Scientific Research Project LGY2019087

Abstract

Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.



Publication History

Received: 30 September 2020

Accepted after revision: 15 February 2021

Article published online:
24 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Grossniklaus HE, Geisert EE, Nickerson JM. Introduction to the retina. Prog Mol Biol Transl Sci 2015; 134: 383-396
  • 2 Grimm C, Willmann G. Hypoxia in the eye: a two-sided coin. High Alt Med Biol 2012; 13: 169-175
  • 3 Simo-Servat O, Hernandez C, Simo R. Genetics in diabetic retinopathy: current concepts and new insights. Curr Genomics 2013; 14: 289-299
  • 4 Stone WL, Patel BC, Basit H, Salini B. Retinopathy. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021
  • 5 Hatef E, Fotouhi A, Hashemi H, Mohammad K, Jalali KH. Prevalence of retinal diseases and their pattern in Tehran: the Tehran eye study. Retina 2008; 28: 755-762
  • 6 Nkanga D, Adenuga O, Okonkwo O, Ovienria W, Ibanga A, Agweye C, Oyekunle I, Akanbi T. Collaborative Retina Research Network. Profile, visual presentation and burden of retinal diseases seen in ophthalmic clinics in Sub-Saharan Africa. Clin Ophthalmol 2020; 14: 679-687
  • 7 Uygun BE, Sharma N, Yarmush M. Retinal pigment epithelium differentiation of stem cells: current status and challenges. Crit Rev Biomed Eng 2009; 37: 355-375
  • 8 Rossino MG, Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019; 11: 771
  • 9 Sacconi R, Giuffre C, Corbelli E, Borrelli E, Querques G, Bandello F. Emerging therapies in the management of macular edema: a review. F1000Res 2019; 8: F1000
  • 10 McMurry JE, Begley TP. The organic chemistry of biological pathways. Englewood, Colorado: Roberts and Company; 2005: 93-160
  • 11 Biswas T, Dwivedi UN. Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. Protoplasma 2019; 256: 1463-1486
  • 12 Thimmappa R, Geisler K, Louveau T, OʼMaille P, Osbourn A. Triterpene biosynthesis in plants. Annu Rev Plant Biol 2014; 65: 225-257
  • 13 Muffler K, Leipold D, Scheller MC, Haas C, Steingroewer J, Bley T, Neuhaus HE, Mirata MA, Schrader J, Ulber R. Biotransformation of triterpenes. Process Biochem 2011; 46: 1-15
  • 14 Sheng H, Sun H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28: 543-593
  • 15 Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 2006; 23: 394-411
  • 16 Li J, Cao H, Liu P. Glycyrrhizic acid in the treatment of liver diseases: literature review. Biomed Res Int 2014; 2014: 872139
  • 17 Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res 2018; 32: 2323-2339
  • 18 Clinicaltrials.gov. Accessed January 17, 2021 at: https://clinicaltrials.gov/ct2/results?cond=&term=glycyrrhizinic+acid&cntry=&state=&city=&dist=
  • 19 van Rossum TG, Vulto AG, Hop WC, Schalm SW. Pharmacokinetics of intravenous glycyrrhizin after single and multiple doses in patients with chronic hepatitis C infection. Clin Ther 1999; 21: 2080-2090
  • 20 Yamamura Y, Kotaki H, Tanaka N, Aikawa T, Sawada Y, Iga T. The pharmacokinetics of glycyrrhizin and its restorative effect on hepatic function in patients with chronic hepatitis and in chronically carbon-tetrachloride-intoxicated rats. Biopharm Drug Dispos 1997; 18: 717-725
  • 21 He H, Wei D, Liu H, Zhu C, Lu Y, Ke Z, Jiang S, Huang J. Glycyrrhizin protects against sodium iodate-induced RPE and retinal injury though activation of AKT and Nrf2/HO-1 pathway. J Cell Mol Med 2019; 23: 3495-3504
  • 22 Mohammad G, Alam K, Nawaz MI, Siddiquei MM, Mousa A, El-Asrar AMA. Mutual enhancement between high-mobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers. J Physiol Biochem 2015; 71: 359-372
  • 23 Liu L, Jiang Y, Steinle JJ. Inhibition of HMGB1 protects the retina from ischemia-reperfusion, as well as reduces insulin resistance proteins. PLoS One 2017; 12: e0178236
  • 24 Song Z, Gong Y, Liu H, Ren Q, Sun X. Glycyrrhizin could reduce ocular hypertension induced by triamcinolone acetonide in rabbits. Mol Vis 2011; 17: 2056
  • 25 Li J, Shi J, Sun Y, Zheng F. Glycyrrhizin, a potential drug for autoimmune encephalomyelitis by inhibiting high-mobility group box 1. DNA Cell Biol 2018; 37: 941-946
  • 26 El-Asrar AMA, Alam K, Garcia-Ramirez M, Ahmad A, Siddiquei MM, Mohammad G, Mousa A, De Hertogh G, Opdenakker G, Simo R. Association of HMGB1 with oxidative stress markers and regulators in PDR. Mol Vis 2017; 23: 853
  • 27 Mohammad G, Siddiquei MM, Othman A, Al-Shabrawey M, El-Asrar AMA. High-mobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina. Exp Eye Res 2013; 107: 101-109
  • 28 Lee JJ, Hsiao CC, Yang IH, Chou MH, Wu CL, Wei YC, Chen CH, Chuang JH. High-mobility group box 1 protein is implicated in advanced glycation end products–induced vascular endothelial growth factor A production in the rat retinal ganglion cell line RGC-5. Mol Vis 2012; 18: 838
  • 29 El-Asrar AMA, Nawaz MI, Kangave D, Geboes K, Ola MS, Ahmad S, Al-Shabrawey M. High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Mol Vis 2011; 17: 1829
  • 30 Abu El-Asrar AM, Mohammad G, Nawaz MI, Siddiquei MM. High-mobility group box-1 modulates the expression of inflammatory and angiogenic signaling pathways in diabetic retina. Curr Eye Res 2015; 40: 1141-1152
  • 31 El-Asrar A, Ahmed M, Nawaz MI, Siddiquei MM, Al-Kharashi AS, Kangave D, Mohammad G. High-mobility group box-1 induces decreased brain-derived neurotrophic factor-mediated neuroprotection in the diabetic retina. Mediators Inflamm 2013; 2013: 863036
  • 32 El-Asrar A, Ahmed M, Siddiquei mM Nawaz MI, Geboes K, Mohammad G. The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediators Inflamm 2014; 2014: 746415
  • 33 Tu JH, He YJ, Chen Y, Fan L, Zhang W, Tan ZR, Huang YF, Guo D, Hu DL, Wang D, Hong-Hao Z. Effect of glycyrrhizin on the activity of CYP3A enzyme in humans. Eur J Clin Pharmacol 2010; 66: 805-810
  • 34 Sun H, Wang J, Lv J. Effects of glycyrrhizin on the pharmacokinetics of paeoniflorin in rats and its potential mechanism. Pharm Biol 2019; 57: 550-554
  • 35 Liao S, Jin X, Li J, Zhang T, Zhang W, Shi W, Fan S, Wang X, Wang J, Zhong B, Zhang Z. Effects of silymarin, glycyrrhizin, and oxymatrine on the pharmacokinetics of ribavirin and its major metabolite in rats. Phytother Res 2016; 30: 618-626
  • 36 Zhao Q, Wang Y, Wang H, Feng L. Effects of glycyrrhizin on the pharmacokinetics of puerarin in rats. Xenobiotica 2018; 48: 1157-1163
  • 37 Ao Y, Chen J, Yue J, Peng RX. Effects of 18alpha-glycyrrhizin on the pharmacodynamics and pharmacokinetics of glibenclamide in alloxan-induced diabetic rats. Eur J Pharmacol 2008; 587: 330-335
  • 38 Han L, Wang R, Wu B, Gu Y, Yuan Y. Effect of diammonium glycyrrhizinate on pharmacokinetics of omeprazole by regulating cytochrome P450 enzymes and plasma protein binding rate. Xenobiotica 2019; 49: 975-980
  • 39 Tu JH, Hu DL, Dai LL, Sun Y, Fan L, Zhang M, Tan ZR, Chen Y, Li Z, Zhou HH. Effect of glycyrrhizin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes. Xenobiotica 2010; 40: 393-399
  • 40 Chen L, Yang J, Davey AK, Chen YX, Wang JP, Liu XQ. Effects of diammonium glycyrrhizinate on the pharmacokinetics of aconitine in rats and the potential mechanism. Xenobiotica 2009; 39: 955-963
  • 41 Yan M, Fang PF, Li HD, Xu P, Liu YP, Wang F, Cai HL, Tan QY. Lack of effect of continuous glycyrrhizin administration on the pharmacokinetics of the P-glycoprotein substrate talinolol in healthy volunteers. Eur J Clin Pharmacol 2013; 69: 515-521
  • 42 Guo L, Cui Y, Hao K. Effects of glycyrrhizin on the pharmacokinetics of asiatic acid in rats and its potential mechanism. Pharm Biol 2018; 56: 119-123
  • 43 Yan G, Zhang H, Wang W, Li Y, Mao C, Fang M, Yi X, Zhang J. Investigation of the influence of glycyrrhizin on the pharmacokinetics of celastrol in rats using LC-MS and its potential mechanism. Xenobiotica 2017; 47: 607-613
  • 44 Suzuki T, Sasano H, Kaneko C, Ogawa S, Darnel AD, Krozowski ZS. Immunohistochemical distribution of 11β-hydroxysteroid dehydrogenase in human eye. Mol Cell Endocrinol 2001; 173: 121-125
  • 45 Na YJ, Choi KJ, Park SB, Sung HR, Jung WH, Kim HY, Rhee SD, Kim KY. Protective effects of carbenoxolone, an 11β-HSD1 inhibitor, against chemical induced dry eye syndrome. Apoptosis 2017; 22: 1441-1453
  • 46 Pan F, Mills SL, Massey SC. Screening of gap junction antagonists on dye coupling in the rabbit retina. Vis Neurosci 2007; 24: 609-618
  • 47 Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 2004; 36: 1171-1186
  • 48 Pottek M, Hoppenstedt W, Janssen-Bienhold U, Schultz K, Perlman I, Weiler R. Contribution of connexin26 to electrical feedback inhibition in the turtle retina. J Comp Neurol 2003; 466: 468-477
  • 49 McMahon MJ, Packer OS, Dacey DM. The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J Neurosci 2004; 24: 3736-3745
  • 50 Cusato K, Bosco A, Rozental R, Guimarães CA, Reese BE, Linden R, Spray DC. Gap junctions mediate bystander cell death in developing retina. J Neurosci 2003; 23: 6413-6422
  • 51 Vaney DI, Nelson JC, Pow DV. Neurotransmitter coupling through gap junctions in the retina. J Neurosci 1998; 18: 10594-10602
  • 52 Packer OS, Dacey DM. Synergistic center-surround receptive field model of monkey H1 horizontal cells. J Vis 2005; 5: 1038-1054
  • 53 Bramley JR, Wiles EM, Sollars PJ, Pickard GE. Carbenoxolone blocks the light-evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors. PLoS One 2011; 6: e22721
  • 54 Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R. Hemichannel-mediated inhibition in the outer retina. Science 2001; 292: 1178-1180
  • 55 Khamidakh AA, Juuti-Uusitalo K, Larsson K, Skottman H, Hyttinen J. Intercellular Ca2+ wave propagation in human retinal pigment epithelium cells induced by mechanical stimulation. Exp Eye Res 2013; 108: 129-139
  • 56 Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LR. Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 2010; 28: 39-52
  • 57 Xia Y, Nawy S. The gap junction blockers carbenoxolone and 18β-glycyrrhetinic acid antagonize cone-driven light responses in the mouse retina. Vis Neurosci 2003; 20: 429-435
  • 58 Verweij J, Hornstein EP, Schnapf JL. Surround antagonism in macaque cone photoreceptors. J Neurosci 2003; 23: 10249-10257
  • 59 Vessey JP, Lalonde MR, Mizan HA, Welch NC, Kelly ME, Barnes S. Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina. J Neurophysiol 2004; 92: 1252-1256
  • 60 Ammon H. Boswellic acids and their role in chronic inflammatory diseases. Adv Exp Med Biol 2016; 928: 291-327
  • 61 Al-Yasiry ARM, Kiczorowska B. Frankincense – therapeutic properties. Postepy Hig Med Dosw (Online) 2016; 70: 380-391
  • 62 Roy NK, Deka A, Bordoloi D, Mishra S, Kumar AP, Sethi G, Kunnumakkara AB. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett 2016; 377: 74-86
  • 63 Lyons BL, Smith RS, Hurd RE, Hawes NL, Burzenski LM, Nusinowitz S, Hasham MG, Chang B, Shultz LD. Deficiency of SHP-1 protein-tyrosine phosphatase in “viable motheaten” mice results in retinal degeneration. Invest Ophthalmol Vis Sci 2006; 47: 1201-1209
  • 64 Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL. Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 2009; 15: 1298
  • 65 Mei S, Cammalleri M, Azara D, Casini G, Bagnoli P, Dal Monte M. Mechanisms underlying somatostatin receptor 2 down-regulation of vascular endothelial growth factor expression in response to hypoxia in mouse retinal explants. J Pathol 2012; 226: 519-533
  • 66 Lulli M, Cammalleri M, Fornaciari I, Casini G, Dal Monte M. Acetyl-11-keto-β-boswellic acid reduces retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Exp Eye Res 2015; 135: 67-80
  • 67 Riva A, Morazzoni P, Artaria C, Allegrini P, Meins J, Savio D, Appendino G, Schubert-Zsilavecz M, Abdel-Tawab M. A single-dose, randomized, cross-over, two-way, open-label study for comparing the absorption of boswellic acids and its lecithin formulation. Phytomedicine 2016; 23: 1375-1382
  • 68 Sterk V, Büchele B, Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med 2004; 70: 1155-1160
  • 69 Tausch L, Henkel A, Siemoneit U, Poeckel D, Kather N, Franke L, Hofmann B, Schneider G, Angioni C, Geisslinger G, Skarke C, Holtmeier W, Beckhaus T, Karas M, Jauch J, Werz O. Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. J Immunol 2009; 183: 3433-3442
  • 70 Abdel-Tawab M, Werz O, Schubert-Zsilavecz M. Boswellia serrata: an overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clin Pharmacokinet 2011; 50: 349-369
  • 71 Chen SR, Dai Y, Zhao J, Lin L, Wang Y, Wang Y. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F. Front Pharmacol 2018; 9: 104
  • 72 Bian M, Du X, Cui J, Wang P, Wang W, Zhu W, Zhang T, Chen Y. Celastrol protects mouse retinas from bright light-induced degeneration through inhibition of oxidative stress and inflammation. J Neuroinflammation 2016; 13: 50
  • 73 Gu L, Kwong JM, Yadegari D, Yu F, Caprioli J, Piri N. The effect of celastrol on the ocular hypertension-induced degeneration of retinal ganglion cells. Neurosci Lett 2018; 670: 89-93
  • 74 Kyung H, Kwong JM, Bekerman V, Gu L, Yadegari D, Caprioli J, Piri N. Celastrol supports survival of retinal ganglion cells injured by optic nerve crush. Brain Res 2015; 1609: 21-30
  • 75 Paimela T, Hyttinen JM, Viiri J, Ryhänen T, Karjalainen RO, Salminen A, Kaarniranta K. Celastrol regulates innate immunity response via NF-κB and Hsp70 in human retinal pigment epithelial cells. Pharmacol Res 2011; 64: 501-508
  • 76 Huang Y, Zhou D, Hang T, Wu Z, Liu J, Xu Q, Xie X, Zuo J, Wang Z, Zhou Y. Preparation, characterization, and assessment of the antiglioma effects of liposomal celastrol. Anticancer Drugs 2012; 23: 515-524
  • 77 Kim JE, Lee MH, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Han SY. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One 2013; 8: e62068
  • 78 Sirtori CR. Aescin: pharmacology, pharmacokinetics and therapeutic profile. Pharmacol Res 2001; 44: 183-193
  • 79 Cheong DH, Arfuso F, Sethi G, Wang L, Hui KM, Kumar AP, Tran T. Molecular targets and anti-cancer potential of escin. Cancer Lett 2018; 422: 1-8
  • 80 Wang K, Jiang Y, Wang W, Ma J, Chen M. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress. Biochem Biophys Res Commun 2015; 468: 541-547
  • 81 Zhang F, Man X, Yu H, Liu L, Li Y. Synergistic protective effects of escin and low-dose glucocorticoids against vascular endothelial growth factor-induced blood-retinal barrier breakdown in retinal pigment epithelial and umbilical vein endothelial cells. Mol Med Rep 2015; 11: 1372-1377
  • 82 Zhang F, Li Y, Zhang L, Mu G. Synergistic protective effects of escin and low-dose glucocorticoids on blood-retinal barrier breakdown in a rat model of retinal ischemia. Mol Med Rep 2013; 7: 1511-1515
  • 83 Wu X, Liu L, Zhang M, Wu D, Wang Y, Sun Y, Fawcett JP, Gu J, Zhang J. Simultaneous analysis of isomers of escin saponins in human plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study after oral administration. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878: 861-867
  • 84 Lin C, Wen X, Sun H. Oleanolic acid derivatives for pharmaceutical use: a patent review. Expert Opin Ther Pat 2016; 26: 643-655
  • 85 Zhao H, Zhou M, Duan L, Wang W, Zhang J, Wang D, Liang X. Efficient synthesis and anti-fungal activity of oleanolic acid oxime esters. Molecules 2013; 18: 3615-3629
  • 86 Pollier J, Goossens A. Oleanolic acid. Phytochemistry 2012; 77: 10-15
  • 87 Ayeleso T, Matumba M, Mukwevho E. Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules 2017; 22: 1915
  • 88 Fai YM, Tao CC. A review of presence of oleanolic acid in natural products. Natura Proda Medica 2009; 2: 77-290
  • 89 Song M, Hang TJ, Wang Y, Jiang L, Wu XL, Zhang Z, Shen J, Zhang Y. Determination of oleanolic acid in human plasma and study of its pharmacokinetics in Chinese healthy male volunteers by HPLC tandem mass spectrometry. J Pharm Biomed Anal 2006; 40: 190-196
  • 90 Jeong DW, Kim YH, Kim HH, Ji HY, Yoo SD, Choi WR, Lee SM, Han CK, Lee HS. Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm Drug Dispos 2007; 28: 51-57
  • 91 Jeong DW, Kim YH, Kim HH, Ji HY, Yoo SD, Choi WR, Lee SM, Han CK, Lee HS. Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm Drug Dispos 2007; 28: 51-57
  • 92 Woźniak Ł, Skąpska S, Marszałek K. Ursolic acid–A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2015; 20: 20614-20641
  • 93 Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I. Ursolic acid derivatives for pharmaceutical use: a patent review (2012–2016). Expert Opin Ther Pat 2017; 27: 1061-1072
  • 94 Liao Q, Yang W, Jia Y, Chen X, Gao Q, Bi K. LC-MS determination and pharmacokinetic studies of ursolic acid in rat plasma after administration of the traditional chinese medicinal preparation Lu-Ying extract. Yakugaku Zasshi 2005; 125: 509-515
  • 95 Wang W, Zhang W, Jiang Y, Wang X, Zhang X, Liu H, Zhang T. Preparation of ursolic acid-phospholipid complex by solvent-assisted grinding method to improve dissolution and oral bioavailability. Pharm Dev Technol 2020; 25: 68-75
  • 96 Lee YH, Kumar NC, Glickman RD. Modulation of photochemical damage in normal and malignant cells by naturally occurring compounds. Photochem Photobiol 2012; 88: 1385-1395
  • 97 Lee YH, Wang E, Kumar N, Glickman RD. Ursolic acid differentially modulates apoptosis in skin melanoma and retinal pigment epithelial cells exposed to UV-VIS broadband radiation. Apoptosis 2014; 19: 816-828
  • 98 Alvarado HL, Abrego G, Garduño-Ramirez ML, Clares B, Calpena AC, García ML. Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine 2015; 11: 521-530
  • 99 Huang W, Gao F, Hu F, Huang J, Wang M, Xu P, Zhang R, Chen J, Sun X, Zhang S, Wu J. Asiatic acid prevents retinal ganglion cell apoptosis in a rat model of glaucoma. Front Neurosci 2018; 12: 489
  • 100 Yang B, Xu Y, Hu Y, Luo Y, Lu X, Tsui CK, Lu L, Liang X. Madecassic acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress. Biomed Pharmacother 2016; 84: 845-852
  • 101 Toledo CR, Pereira VV, Dourado LFN, Paiva MRB, Silva-Cunha A. Corosolic acid: antiangiogenic activity and safety of intravitreal injection in rats eyes. Doc Ophthalmol 2019; 138: 181-194
  • 102 Speranza G, Gutierrez ME, Kummar S, Strong JM, Parker RJ, Collins J, Yu Y, Cao L, Murgo AJ, Doroshow JH, Chen A. Phase I study of the synthetic triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), in advanced solid tumors. Cancer Chemother Pharmacol 2012; 69: 431-438
  • 103 Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 2018; 134: 92-99
  • 104 Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 2018; 1865: 721-733
  • 105 Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 2018; 50: 77-97
  • 106 Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-426
  • 107 Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88: 314-336
  • 108 Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73: 3221-3247
  • 109 Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39: 199-218
  • 110 Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal 2018; 29: 1727-1745
  • 111 Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 2017; 60: 201-218
  • 112 Lambros ML, Plafker SM. Oxidative stress and the Nrf2 anti-oxidant transcription factor in age-related macular degeneration. Adv Exp Med Biol 2016; 854: 67-72
  • 113 Bellezza I. Oxidative stress in age-related macular degeneration: Nrf2 as therapeutic target. Front Pharmacol 2018; 9: 1280
  • 114 Kowluru RA, Mishra M. Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2. Free Radic Biol Med 2017; 103: 155-164
  • 115 Nakagami Y. Nrf2 Is an attractive therapeutic target for retinal diseases. Oxid Med Cell Longev 2016; 2016: 7469326
  • 116 Liu XF, Zhou DD, Xie T, Hao JL, Malik TH, Lu CB, Qi J, Pant OP, Lu CW. The Nrf2 signaling in retinal ganglion cells under oxidative stress in ocular neurodegenerative diseases. Int J Biol Sci 2018; 14: 1090
  • 117 Sachdeva MM, Cano M, Handa JT. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res 2014; 119: 111-114
  • 118 Deliyanti D, Lee JY, Petratos S, Meyer CJ, Ward KW, Wilkinson-Berka JL, de Haan JB. A potent Nrf2 activator, dh404, bolsters antioxidant capacity in glial cells and attenuates ischaemic retinopathy. Clin Sci 2016; 130: 1375-1387
  • 119 Deliyanti D, Alrashdi SF, Tan SM, Meyer C, Ward KW, de Haan JB, Wilkinson-Berka JL. Nrf2 activation is a potential therapeutic approach to attenuate diabetic retinopathy. Invest Ophthalmol Vis Sci 2018; 59: 815-825
  • 120 Xu Z, Cho H, Hartsock MJ, Mitchell KL, Gong J, Wu L, Wei Y, Wang S, Thimmulappa RK, Sporn MB. Neuroprotective role of Nrf2 for retinal ganglion cells in ischemia-reperfusion. J Neurochem 2015; 133: 233-241
  • 121 Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, Nakazawa T. Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 2013; 127: 669-680
  • 122 Pitha-Rowe I, Liby K, Royce D, Sporn M. Synthetic triterpenoids attenuate cytotoxic retinal injury: cross-talk between Nrf2 and PI3K/AKT signaling through inhibition of the lipid phosphatase PTEN. Invest Ophthalmol Vis Sci 2009; 50: 5339-5347
  • 123 Hong DS, Kurzrock R, Supko JG, He X, Naing A, Wheler J, Lawrence D, Eder JP, Meyer CJ, Ferguson DA, Mier J, Konopleva M, Konoplev S, Andreeff M, Kufe D, Lazarus H, Shapiro GI, Dezube BJ. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin Cancer Res 2012; 18: 3396-3406
  • 124 Thomas M. A preliminary evaluation of bardoxolone methyl for the treatment of diabetic nephropathy. Expert Opin Drug Metab Toxicol 2012; 8: 1015-1022
  • 125 Imai T, Takagi T, Kitashoji A, Yamauchi K, Shimazawa M, Hara H. Nrf2 activator ameliorates hemorrhagic transformation in focal cerebral ischemia under warfarin anticoagulation. Neurobiol Dis 2016; 89: 136-146
  • 126 Wei Y, Gong J, Yoshida T, Eberhart CG, Xu Z, Kombairaju P, Sporn MB, Handa JT, Duh EJ. Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia–reperfusion injury. Free Radic Biol Med 2011; 51: 216-224
  • 127 Liu X, Ward K, Xavier C, Jann J, Clark AF, Pang IH, Wu H. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol 2016; 8: 98-109
  • 128 Reisman SA, Gahir SS, Lee CI, Proksch JW, Sakamoto M, Ward KW. Pharmacokinetics and pharmacodynamics of the novel Nrf2 activator omaveloxolone in primates. Drug Des Devel Ther 2019; 13: 1259-1270
  • 129 Creelan BC, Gabrilovich DI, Gray JE, Williams CC, Tanvetyanon T, Haura EB, Weber JS, Gibney GT, Markowitz J, Proksch JW, Reisman SA, McKee MD, Chin MP, Meyer CJ, Antonia SJ. Safety, pharmacokinetics, and pharmacodynamics of oral omaveloxolone (RTA 408), a synthetic triterpenoid, in a first-in-human trial of patients with advanced solid tumors. Onco Targets Ther 2017; 10: 4239-4250
  • 130 Nakagami Y, Masuda K, Hatano E, Inoue T, Matsuyama T, Iizuka M, Ono Y, Ohnuki T, Murakami Y, Iwasaki M. Novel N rf2 activators from microbial transformation products inhibit blood–retinal barrier permeability in rabbits. Br J Pharmacol 2015; 172: 1237-1249
  • 131 Inoue Y, Shimazawa M, Noda Y, Nagano R, Otsuka T, Kuse Y, Nakano Y, Tsuruma K, Nakagami Y, Hara H. RS 9, a novel Nrf2 activator, attenuates light-induced death of cells of photoreceptor cells and Müller glia cells. J Neurochem 2017; 141: 750-765
  • 132 Saito Y, Kuse Y, Inoue Y, Nakamura S, Hara H, Shimazawa M. Transient acceleration of autophagic degradation by pharmacological Nrf2 activation is important for retinal pigment epithelium cell survival. Redox Biol 2018; 19: 354-363
  • 133 Nakamura S, Noguchi T, Inoue Y, Sakurai S, Nishinaka A, Hida Y, Masuda T, Nakagami Y, Horai N, Tsusaki H. Nrf2 activator RS9 suppresses pathological ocular angiogenesis and hyperpermeability. Invest Ophthalmol Vis Sci 2019; 60: 1943-1952
  • 134 Nakagami Y, Hatano E, Inoue T, Yoshida K, Kondo M, Terasaki H. Cytoprotective effects of a novel Nrf2 activator, RS9, in rhodopsin Pro347Leu rabbits. Curr Eye Res 2016; 41: 1123-1126
  • 135 Cheng Z, Yao W, Zheng J, Ding W, Wang Y, Zhang T, Zhu L, Zhou F. A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress. Exp Eye Res 2019; 180: 92-101
  • 136 Cheng Z, Zhang T, Zheng J, Ding W, Wang Y, Li Y, Zhu L, Murray M, Zhou F. Betulinic acid derivatives can protect human Müller cells from glutamate-induced oxidative stress. Exp Cell Res 2019; 383: 111509
  • 137 Maurya A, Khan F, Bawankule DU, Yadav DK, Srivastava SK. QSAR, docking and in vivo studies for immunomodulatory activity of isolated triterpenoids from Eucalyptus tereticornis and Gentiana kurroo . Eur J Pharm Sci 2012; 47: 152-161
  • 138 Neukirch H, DʼAmbrosio M, Sosa S, Altinier G, Della Loggia R, Guerriero A. Improved anti-inflammatory activity of three new terpenoids derived, by systematic chemical modifications, from the abundant triterpenes of the flowery plant Calendula officinalis. Chem Biodivers 2005; 2: 657-671
  • 139 Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev 2009; 29: 767-820
  • 140 Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 2018; 28: 1797-1803
  • 141 Chen Z, Zhang D, Yan S, Hu C, Huang Z, Li Z, Peng S, Li X, Zhu Y, Yu H, Lian B, Kang Q, Li M, Zeng Z, Zhang XK, Su Y. SAR study of celastrol analogs targeting Nur77-mediated inflammatory pathway. Eur J Med Chem 2019; 177: 171-187
  • 142 Hussain H, Al-Harrasi A, Csuk R, Shamraiz U, Green IR, Ahmed I, Khan IA, Ali Z. Therapeutic potential of boswellic acids: a patent review (1990–2015). Expert Opin Ther Pat 2017; 27: 81-90
  • 143 Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I. Ursolic acid derivatives for pharmaceutical use: a patent review (2012–2016). Expert Opin Ther Pat 2017; 27: 1061-1072
  • 144 Wang D, Su D, Yu B, Chen C, Cheng L, Li X, Xi R, Gao H, Wang X. Novel anti-tumour barringenol-like triterpenoids from the husks of Xanthoceras sorbifolia Bunge and their three dimensional quantitative structure activity relationships analysis. Fitoterapia 2017; 116: 51-60
  • 145 Zhang X, Zhang S, Yang Y, Wang D, Gao H. Natural barrigenol-like triterpenoids: A comprehensive review of their contributions to medicinal chemistry. Phytochemistry 2019; 161: 41-74
  • 146 Ma CM, Cai SQ, Cui JR, Wang RQ, Tu PF, Hattori M, Daneshtalab M. The cytotoxic activity of ursolic acid derivatives. Eur J Med Chem 2005; 40: 582-589
  • 147 Ren Y, Anaya-Eugenio GD, Czarnecki AA, Ninh TN, Yuan C, Chai HB, Soejarto DD, Burdette JE, de Blanco EJC, Kinghorn AD. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorg Med Chem 2018; 26: 4452-4460
  • 148 Bhandari P, Patel NK, Gangwal RP, Sangamwar AT, Bhutani KK. Oleanolic acid analogs as NO, TNF-α and IL-1β inhibitors: synthesis, biological evaluation and docking studies. Bioorg Med Chem Lett 2014; 24: 4114-4119
  • 149 Zhang L, Dong J, Liu J, Zhang L, Kong L, Yao H, Sun H. Synthesis and biological evaluation of novel pentacyclic triterpene derivatives as potential PPARγ agonists. Med Chem 2013; 9: 118-125
  • 150 Xu H, Tang H, Feng H, Li Y. Design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. Eur J Med Chem 2014; 73: 46-55
  • 151 Cheng K, Liu J, Liu X, Li H, Sun H, Xie J. Synthesis of glucoconjugates of oleanolic acid as inhibitors of glycogen phosphorylase. Carbohydr Res 2009; 344: 841-850
  • 152 Ding W, Sun M, Luo S, Xu T, Cao Y, Yan X, Wang Y. A 3D QSAR study of betulinic acid derivatives as anti-tumor agents using topomer CoMFA: model building studies and experimental verification. Molecules 2013; 18: 10228-10241
  • 153 Zhang DM, Xu HG, Wang L, Li YJ, Sun PH, Wu XM, Wang GJ, Chen WM, Ye WC. Betulinic acid and its derivatives as potential antitumor agents. Med Res Rev 2015; 35: 1127-1155
  • 154 Powers JC, Asgian JL, Ekici OD, James KE. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002; 102: 4639-4750
  • 155 Siewert B, Wiemann J, Köwitsch A, Csuk R. The chemical and biological potential of C ring modified triterpenoids. Eur J Med Chem 2014; 72: 84-101
  • 156 Couch RD, Browning RG, Honda T, Gribble GW, Wright DL, Sporn MB, Anderson AC. Studies on the reactivity of CDDO, a promising new chemopreventive and chemotherapeutic agent: implications for a molecular mechanism of action. Bioorg Med Chem Lett 2005; 15: 2215-2219
  • 157 Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, Williams C, Risingsong R, Honda T, Gribble GW, Sporn MB, Talalay P. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci U S A 2005; 102: 4584-4589
  • 158 Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, Callahan JF, Carr R, Concha N, Kerns JK, Qi H, Sweitzer T, Ward P, Davies TG. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One 2014; 9: e98896
  • 159 Lee DH, Lee J, Jeon J, Kim KJ, Yun JH, Jeong HS, Lee EH, Koh YJ, Cho CH. Oleanolic Acids inhibit vascular endothelial growth factor receptor 2 signaling in endothelial cells: implication for anti-angiogenic therapy. Mol Cells 2018; 41: 771