Subscribe to RSS
DOI: 10.1055/a-1363-2520
Maschinenperfusion in der Lebertransplantation – was ist möglich und wo stehen wir in Deutschland? Übersicht der Literatur und Ergebnisse einer nationalen Umfrage
Machine Perfusion for Liver Transplantation – What is Possible and Where Do We Stand in Germany? Review of the Literature and Results of a National SurveyZusammenfassung
Die Maschinenperfusion von Spenderlebern gilt als die aktuell wichtigste Neuerung in der Transplantationschirurgie, um dem anhaltenden Organmangel in der Lebertransplantation begegnen zu können. Die hypotherme Maschinenperfusion (HMP) ist sicher anzuwenden und scheint auch nach einer vorangegangenen kalten Ischämiephase bei Spendern mit einem Herzstillstand das Risiko für Gallenwegskomplikationen zur verringern sowie das Langzeitüberleben der Empfänger zu verbessern. Ein potenzieller Funktionstest der Spenderorgane während der HMP über die Bestimmung von Flavinmononukleotid befindet sich jedoch derzeit noch in klinischer Erprobung. Die normotherme Maschinenperfusion (NMP) hat ein höheres Risiko für technische Probleme, jedoch ermöglicht die Funktionstestung anhand konventioneller Laborparameter während der NMP eine deutliche Erweiterung des Spenderpools, wenngleich aktuell keine prospektive randomisierte Studie einen Überlebensvorteil für transplantierte Organe nach NMP aufzeigen konnte. Darüber hinaus lässt sich die Konservierungszeit der Spenderorgane mithilfe der NMP signifikant verlängern, was vor allem bei komplexen Empfängeroperationen und/oder aufwendiger Logistik vorteilhaft ist. Beide Methoden könnten für verschiedene Szenarien in der Transplantationsmedizin – theoretisch auch kombiniert – angewandt werden. Die Mehrheit der deutschen Transplantationszentren sieht in der Maschinenperfusion eine wichtige Innovation und führt bereits aktiv Perfusionen durch oder befindet sich in einer entsprechenden Vorbereitung hierauf. Die praktische Erfahrung in Deutschland ist insgesamt jedoch noch relativ gering: bei nur 2 Zentren, die mehr als 20 Perfusionen durchgeführt haben. In den kommenden Jahren sind daher multizentrische Anstrengungen zur Durchführung von klinischen Studien sowie der Erarbeitung von nationalen Leitlinien zur Maschinenperfusion unabdingbar, um das Potenzial dieser technologischen Entwicklungen fundiert definieren und für das Feld der Transplantationsmedizin optimal ausschöpfen zu können.
Abstract
Machine perfusion of donor livers is currently regarded as the most important innovation in transplant surgery to address the continuing shortage of organs in liver transplantation. Hypothermic machine perfusion (HMP) is safe to use and appears to reduce the risk of biliary complications and improve the long-term survival of transplanted organs following preservation by cold static storage – even in donors after cardiac death. A potential functional test of donor organs during HMP uses flavin mononucleotide and is still under clinical investigation. Normothermic machine perfusion (NMP) has a greater risk of technical problems, but functional testing using conventional laboratory parameters during NMP allows significant expansion of the donor pool, even though no prospective randomised study has been able to demonstrate a survival advantage for transplanted organs after NMP. In addition, the preservation time of the donor organs can be significantly extended with the help of NMP, which is particularly advantageous for complex recipient operations and/or logistics. Both methods could be applied for various scenarios in transplantation medicine – theoretically also in combination. The majority of German transplant centres regard machine perfusion as an important innovation and already actively perform perfusions or are in preparation for doing so. However, the overall practical experience in Germany is still relatively low, with only 2 centres having performed more than 20 perfusions. In the coming years, multi-centre efforts to conduct clinical trials and to develop national guidelines on machine perfusion will therefore be indispensable in order to define the potential of these technological developments objectively and to exploit it optimally for the field of transplantation medicine.
Schlüsselwörter
Abdominalchirurgie - chirurgische Technik - Langzeitergebnis - Organtransplantation - Qualitätssicherung - TransplantationschirurgieKey words
abdominal surgery - transplantation surgery - quality control - organ transplantation - long-term prognosis - surgical techniquePublication History
Article published online:
24 March 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Starzl TE, Marchioro TL, Vonkaulla KN. et al. Homotransplantation of the liver in humans. Surg Gynecol Obstet 1963; 117: 659-676
- 2 Zarrinpar A, Busuttil RW. Liver transplantation: past, present and future. Nat Rev Gastroenterol Hepatol 2013; 10: 434-440 doi:10.1038/nrgastro.2013.88
- 3 Pichlmayr R, Ringe B, Gubernatis G. et al. [Transplantation of a donor liver to 2 recipients (splitting transplantation)–a new method in the further development of segmental liver transplantation]. Langenbecks Arch Chir 1988; 373: 127-130
- 4 Kollmann D, Sapisochin G, Goldaracena N. et al. Expanding the donor pool: Donation after circulatory death and living liver donation do not compromise the results of liver transplantation. Liver Transpl 2018; 24: 779-789 doi:10.1002/lt.25068
- 5 Mihaylov P, Mangus R, Ekser B. et al. Expanding the Donor Pool With the Use of Extended Criteria Donation After Circulatory Death Livers. Liver Transpl 2019; 25: 1198-1208 doi:10.1002/lt.25462
- 6 Foster R, Zimmerman M, Trotter JF. Expanding donor options: marginal, living, and split donors. Clin Liver Dis 2007; 11: 417-429 doi:10.1016/j.cld.2007.04.004
- 7 deLemos AS, Vagefi PA. Expanding the donor pool in liver transplantation: Extended criteria donors. Clin Liver Dis (Hoboken) 2013; 2: 156-159 doi:10.1002/cld.222
- 8 Dar WA, Sullivan E, Bynon JS. et al. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int 2019; 39: 788-801 doi:10.1111/liv.14091
- 9 Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation 1988; 45: 673-676 doi:10.1097/00007890-198804000-00001
- 10 De Loecker R, Fuller BJ, Gruwez J. et al. The effects of cryopreservation on membrane integrity, membrane transport, and protein synthesis in rat hepatocytes. Cryobiology 1990; 27: 143-152 doi:10.1016/0011-2240(90)90006-p
- 11 Brasile L, Stubenitsky BM, Booster MH. et al. NOS: the underlying mechanism preserving vascular integrity and during ex vivo warm kidney perfusion. Am J Transplant 2003; 3: 674-679 doi:10.1034/j.1600-6143.2003.00134.x
- 12 van Golen RF, Reiniers MJ, Olthof PB. et al. Sterile inflammation in hepatic ischemia/reperfusion injury: present concepts and potential therapeutics. J Gastroenterol Hepatol 2013; 28: 394-400 doi:10.1111/jgh.12072
- 13 Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg 2001; 181: 160-166 doi:10.1016/s0002-9610(00)00573-0
- 14 Czigany Z, Lurje I, Schmelzle M. et al. Ischemia-Reperfusion Injury in Marginal Liver Grafts and the Role of Hypothermic Machine Perfusion: Molecular Mechanisms and Clinical Implications. J Clin Med 2020; 9: 846 doi:10.3390/jcm9030846
- 15 Couch NP, Cassie GF, Murray JE. Survival of the excised dog kidney perfused in a pump-oxygenator system. I. Circulatory changes in the hypothermic preparation. Surgery 1958; 44: 666-682
- 16 Levy MN. Oxygen consumption and blood flow in the hypothermic, perfused kidney. Am J Physiol 1959; 197: 1111-1114 doi:10.1152/ajplegacy.1959.197.5.1111
- 17 Fuller BJ, Lee CY. Hypothermic perfusion preservation: the future of organ preservation revisited?. Cryobiology 2007; 54: 129-145 doi:10.1016/j.cryobiol.2007.01.003
- 18 Quintini C, Martins PN, Shah S. et al. Implementing an innovated preservation technology: The American Society of Transplant Surgeonsʼ (ASTS) Standards Committee White Paper on Ex Situ Liver Machine Perfusion. Am J Transplant 2018; 18: 1865-1874 doi:10.1111/ajt.14945
- 19 Javanbakht M, Mashayekhi A, Trevor M. et al. Cost-utility analysis of normothermic liver perfusion with the OrganOx metra compared to static cold storage in the United Kingdom. J Med Econ 2020; 23: 1284-1292 doi:10.1080/13696998.2020.1804391
- 20 Guarrera JV, Henry SD, Samstein B. et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant 2010; 10: 372-381 doi:10.1111/j.1600-6143.2009.02932.x
- 21 Dutkowski P, Schlegel A, de Oliveira M. et al. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol 2014; 60: 765-772 doi:10.1016/j.jhep.2013.11.023
- 22 Dutkowski P, Polak WG, Muiesan P. et al. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis. Ann Surg 2015; 262: 764-770 discussion 770–771 doi:10.1097/sla.0000000000001473
- 23 Muller X, Schlegel A, Kron P. et al. Novel Real-time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann Surg 2019; 270: 783-790 doi:10.1097/sla.0000000000003513
- 24 Guarrera JV, Henry SD, Samstein B. et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am J Transplant 2015; 15: 161-169 doi:10.1111/ajt.12958
- 25 Schlegel A, Muller X, Kalisvaart M. et al. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J Hepatol 2019; 70: 50-57 doi:10.1016/j.jhep.2018.10.005
- 26 Patrono D, Surra A, Catalano G. et al. Hypothermic Oxygenated Machine Perfusion of Liver Grafts from Brain-Dead Donors. Sci Rep 2019; 9: 9337 doi:10.1038/s41598-019-45843-3
- 27 Czigany Z, Schöning W, Ulmer TF. et al. Hypothermic oxygenated machine perfusion (HOPE) for orthotopic liver transplantation of human liver allografts from extended criteria donors (ECD) in donation after brain death (DBD): a prospective multicentre randomised controlled trial (HOPE ECD-DBD). BMJ Open 2017; 7: e017558 doi:10.1136/bmjopen-2017-017558
- 28 [Anonymous] Annual Report on Liver Transplantation 2016/2017. NHS Blood and Transplant; 2017. https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/5007/annual_liver_transplantation_report_2017.pdf Im Internet (Stand: 30.01.2021):
- 29 Nasralla D, Coussios CC, Mergental H. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018; 557: 50-56 doi:10.1038/s41586-018-0047-9
- 30 Ravikumar R, Jassem W, Mergental H. et al. Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial. Am J Transplant 2016; 16: 1779-1787 doi:10.1111/ajt.13708
- 31 Selzner M, Goldaracena N, Echeverri J. et al. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: First North American results. Liver Transplant 2016; 22: 1501-1508 doi:10.1002/lt.24499
- 32 Bral M, Gala-Lopez B, Bigam D. et al. Preliminary Single-Center Canadian Experience of Human Normothermic Ex Vivo Liver Perfusion: Results of a Clinical Trial. Am J Transplant 2017; 17: 1071-1080 doi:10.1111/ajt.14049
- 33 Ceresa CDL, Nasralla D, Watson CJE. et al. Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of a Novel Technology. Liver Transplant 2019; 25: 1503-1513 doi:10.1002/lt.25584
- 34 Mergental H, Laing RW, Kirkham AJ. et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nature Commun 2020; 11: 2939 doi:10.1038/s41467-020-16251-3
- 35 Cardini B, Oberhuber R, Fodor M. et al. Clinical Implementation of Prolonged Liver Preservation and Monitoring Through Normothermic Machine Perfusion in Liver Transplantation. Transplantation 2020; 104: 1917-1928 doi:10.1097/tp.0000000000003296
- 36 Liu Q, Nassar A, Buccini L. et al. Ex situ 86-hour liver perfusion: Pushing the boundary of organ preservation. Liver Transplant 2018; 24: 557-561 doi:10.1002/lt.25007
- 37 Eshmuminov D, Becker D, Bautista Borrego L. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nature Biotechnol 2020; 38: 189-198 doi:10.1038/s41587-019-0374-x
- 38 Bogensperger C, Cardini B, Oberhuber R. et al. Dealing With Liver Transplantation during Coronavirus Disease 2019 Pandemic: Normothermic Machine Perfusion Enables for Donor, Organ, and Recipient Assessment: A Case Report. Transplant Proc 2020; 52: 2707-2710 doi:10.1016/j.transproceed.2020.07.011
- 39 Deutsche Stiftung Organtransplantation. Jahresbericht: Organspende und Transplantation in Deutschland 2019. Berlin; 2020. https://dso.de/SiteCollectionDocuments/DSO-Jahresbericht 2019.pdf Im Internet (Stand: 30.01.2021):
- 40 van Leeuwen OB, de Vries Y, Fujiyoshi M. et al. Transplantation of High-risk Donor Livers After Ex Situ Resuscitation and Assessment Using Combined Hypo- and Normothermic Machine Perfusion: A Prospective Clinical Trial. Ann Surg 2019; 270: 906-914 doi:10.1097/sla.0000000000003540
- 41 Stephenson BTF, Bonney GK, Laing RW. et al. Proof of concept: liver splitting during normothermic machine perfusion. J Surg Case Rep 2018; 2018: rjx218 doi:10.1093/jscr/rjx218
- 42 Brockmann JG, Vogel T, Coussios C. et al. Liver splitting during normothermic organ preservation. Liver Transplant 2017; 23: 701-706 doi:10.1002/lt.24693
- 43 Buchwald JE, Xu J, Bozorgzadeh A. et al. Therapeutics administered during ex vivo liver machine perfusion: An overview. World J Transplant 2020; 10: 1-14 doi:10.5500/wjt.v10.i1.1
- 44 Nagrath D, Xu H, Tanimura Y. et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng 2009; 11: 274-283 doi:10.1016/j.ymben.2009.05.005
- 45 Boteon YL, Attard J, Boteon A. et al. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transplant 2019; 25: 1007-1022 doi:10.1002/lt.25439
- 46 Thorne AM, Ubbink R, Brüggenwirth IMA. et al. Hyperthermia-induced changes in liver physiology and metabolism: a rationale for hyperthermic machine perfusion. Am J Physiol Gastrointest Liver Physiol 2020; 319: G43-G50 doi:10.1152/ajpgi.00101.2020
- 47 Galasso M, Feld JJ, Watanabe Y. et al. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nature Commun 2019; 10: 481 doi:10.1038/s41467-018-08261-z
- 48 Figueiredo C, Carvalho Oliveira M, Chen-Wacker C. et al. Immunoengineering of the Vascular Endothelium to Silence MHC Expression During Normothermic Ex Vivo Lung Perfusion. Human Gene Ther 2019; 30: 485-496 doi:10.1089/hum.2018.117
- 49 Figueiredo C, Oldhafer F, Wittauer EM. et al. Silencing of HLA class I on primary human hepatocytes as a novel strategy for reduction in alloreactivity. J Cell Mol Med 2019; 23: 5705-5714 doi:10.1111/jcmm.14484
- 50 Hoyer DP, Mathé Z, Gallinat A. et al. Controlled Oxygenated Rewarming of Cold Stored Livers Prior to Transplantation: First Clinical Application of a New Concept. Transplantation 2016; 100: 147-152 doi:10.1097/tp.0000000000000915
- 51 Hoyer DP, Benkö T, Manka P. et al. Long-term Outcomes After Controlled Oxygenated Rewarming of Human Livers Before Transplantation. Transplant Direct 2020; 6: e542 doi:10.1097/TXD.0000000000000987
- 52 Boteon YL, Laing RW, Schlegel A. et al. Combined Hypothermic and Normothermic Machine Perfusion Improves Functional Recovery of Extended Criteria Donor Livers. Liver Transplant 2018; 24: 1699-1715 doi:10.1002/lt.25315