Osteologie 2021; 30(01): 13-20
DOI: 10.1055/a-1206-6663

Knorpel-Knochenmark-Mikro-Konnektoren im subchondralen Knochen

Cartilage-bone marrow micro-connectors in the subchondral bone
Shahed Taheri
1   Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, Göttingen, Deutschland
Kai O. Böker
1   Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, Göttingen, Deutschland
Wolfgang Lehmann
1   Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, Göttingen, Deutschland
Arndt Friedrich Schilling
1   Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, Göttingen, Deutschland
› Author Affiliations


Die Interaktion des subchondralen Knochens mit dem Gelenkknorpel ist von grundlegender Bedeutung für die Gelenkphysiologie. Studien an Tier- und Humanmodellen haben gezeigt, dass der untere Rand des Gelenkknorpels über kleine Defekte oder Mikrokanäle mit der Markhöhle verbunden ist. Obwohl diese Knorpel-Knochenmark-Mikro-Konnektoren (KKMK ) möglicherweise für den molekularen Austausch, den Knochen-Knorpel-Crosstalk und sogar die Knorpelernährung von entscheidender Bedeutung sein können, ist das derzeitige Wissen über sie begrenzt und inkohärent. Diese Übersicht fasst die bisher beschriebenen Merkmale dieser anatomischen Mikroarchitektur bei verschiedenen Spezies zusammen, untersucht wiederkehrende Muster in der Literatur und erörtert ihre potenzielle Funktionalität.


The interaction of the subchondral bone with the articular cartilage is of fundamental importance for joint physiology. Studies on animal and human models have suggested that the lower margin of the articular cartilage is connected to the medullary cavity via small defects or microchannels. While these cartilage-bone marrow micro-connectors (CMMC) can potentially be crucial for molecular exchange, bone-cartilage crosstalk, and even cartilage nutrition, the current knowledge regarding them is limited and incoherent. This review summarizes the so far described characteristics of this anatomical feature in different species, explores recurring patterns in the literature, and discusses its potential functionality.

Publication History

Article published online:
26 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • Literatur

  • 1 Loeser RF, Goldring SR, Scanzello CR. et al. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum 2012; 64: 1697-1707
  • 2 Chen D, Shen J, Zhao W. et al. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res 2017; 5: 16044
  • 3 Sharma AR, Jagga S, Lee-S- S. et al. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 2013; 14: 19805-19830
  • 4 Li G, Yin J, Gao J. et al. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Res Ther 2013; 15: 223
  • 5 Yuan XL, Meng HY, Wang YC. et al. Bone-cartilage interface crosstalk in osteoarthritis: Potential pathways and future therapeutic strategies. Osteoarthr Cartil 2014; 22: 1077-1089
  • 6 Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: A conversation for understanding osteoarthritis. Bone Res 2016; 4: 16028
  • 7 Bailey AJ, Mansell JP. Do Subchondral Bone Changes Exacerbate or Precede Articular Cartilage Destruction in Osteoarthritis of the Elderly?. Gerontology 1997; 43: 296-304
  • 8 Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 1998; 10: 256-262
  • 9 Hügle T, Geurts J. What drives osteoarthritis?-Synovial versus subchondral bone pathology. (United Kingdom) Rheumatol 2017; 56: 1461-1471
  • 10 Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev 2019; 4: 221-229
  • 11 Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sport Traumatol Arthrosc 2010; 18: 419-433
  • 12 Lemperg R. The subchondral bone plate of the femoral head in adult rabbits. Virchows Arch Abt A Pathol Anat 1971; 352: 1-13
  • 13 Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 1994; 185: 103-110
  • 14 Ogata K, Whiteside LA. Barrier to material transfer at the bone-cartilage interface: Measurement with hydrogen gas in vivo. Clin Orthop Relat Res 1979; 145: 273-276
  • 15 Collins D. The Pathology of Articular and Spinal Diseases. Ann Intern Med 1950; 33: 260
  • 16 Hodge JA, McKibbin B. The nutrition of mature and immature cartilage in rabbits. An autoradiographic study. J Bone Joint Surg Br 1969; 51: 140-147
  • 17 Maroudas A, Bullough P, Swanson SA. et al. The permeability of articular cartilage. J Bone Joint Surg Br 1968; 50: 166-177
  • 18 Milz S, Putz R. Lückenbildungen der subchondralen Mineralisierungszone des Tibiaplateaus. Osteologie 1994; 3: 110-118
  • 19 Woods CG, Greenwald AS, Haynes DW. Subchondral vascularity in the human femoral head. Ann Rheum Dis 1970; 29: 138-142
  • 20 Greenwald AS, Haynes DW. A pathway for nutrients from the medullary cavity to the articular cartilage of the human femoral head. J Bone Joint Surg Br 1969; 51: 747-753
  • 21 Duncan H, Jundt J, Riddle JM. et al. The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am 1987; 69: 1212-1220
  • 22 Holmdahl DE, Ingelmark BE. The contact between the articular cartilage and the medullary cavities of the bone. Acta Orthop Scand 1950; 20: 156-165
  • 23 Wilsman NJ, Van Sickle DC. Cartilage canals, their morphology and distribution. Anat Rec 1972; 173: 79-93
  • 24 Nakano T, Thompson JR, Christopherson RJ. et al. Blood flow distribution in hind limb bones and joint cartilage from young growing pigs. Can J Vet Res 1986; 50: 96-100
  • 25 Taheri S, Winkler T, Schenk L. et al. Developmental Transformation and Reduction of Connective Cavities within the Subchondral Bone. Int J Mol Sci 2019; 20: 770
  • 26 Berry JL, Thaeler-Oberdoerster DA, Greenwald AS. Subchondral pathways to the superior surface of the human talus. Foot Ankle 1986; 7: 2-9
  • 27 Pan J, Zhou X, Li W. et al. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 2009; 27: 1347-1352
  • 28 Arkill KP, Winlove CP. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil 2008; 16: 708-714
  • 29 Lyons TJ, McClure SF, Stoddart RW. et al. The normal human chondro-osseous junctional region: Evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord 2006; 7: 52
  • 30 Clark JM. The structure of vascular channels in the subchondral plate. J Anat 1990; 171: 105-115
  • 31 Mital MA, Millington PF. Osseous pathway of nutrition to articular cartilage of the human femoral head. . (London, England): Lancet; 1970: 1
  • 32 Lane LB, Villacin A, Bullough PG. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br 1977; 59: 272-278
  • 33 Meachim G, Allibone R. Topographical variation in the calcified zone of upper femoral articular cartilage. J Anat 1984; 139 (Pt 2): 341-352
  • 34 Clark JM, Huber JD. The structure of the human subchondral plate. J Bone Joint Surg Br 1990; 72: 866-873
  • 35 Green WT, Martin GN, Eanes ED. et al. Microradiographic study of the calcified layer of articular cartilage. Arch Pathol 1970; 90: 151-158
  • 36 Hwang J, Bae WC, Shieu W. et al. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum 2008; 58: 3831-3842
  • 37 Nachemson A, Lewin T, Maroudas A. et al. In Vitro Diffusion of DYE Through the End-Plates and the Annulus Fibrosus of Human Lumbar Inter-Vertebral Discs. Acta Orthop Scand 1970; 41: 589-607
  • 38 Liu Y, Lian Q, He J. et al. Study on the Microstructure of Human Articular Cartilage/Bone Interface. J Bionic Eng 2011; 8: 251-262