Pharmacopsychiatry 2023; 56(03): 108-117
DOI: 10.1055/a-1027-7055

Circadian Clocks in the Regulation of Neurotransmitter Systems

Jana-Thabea Kiehn
1   Institute of Neurobiology, University of Lübeck, Lübeck, Germany
Frank Faltraco
2   Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
Denise Palm
2   Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
Johannes Thome
2   Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
Henrik Oster
1   Institute of Neurobiology, University of Lübeck, Lübeck, Germany
› Author Affiliations


To anticipate and adapt to daily recurring events defined by the earth’s rotation such as light-dark and temperature cycles, most species have developed internal, so-called circadian clocks. These clocks are involved in the regulation of behaviors such as the sleep-wake cycle and the secretion of hormones and neurotransmitters. Disruptions of the circadian system affect cognitive functions and are associated with various diseases that are characterized by altered neurotransmitter signaling. In this review, we summarize the current knowledge about the interplay of the circadian clock and the regulation of psychiatric health and disease.

Publication History

Received: 21 December 2018
Received: 28 August 2019

Accepted: 08 October 2019

Article published online:
30 October 2019

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 2013; 3-27
  • 2 Zhang R, Lahens NF, Ballance HI. et al. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci 2014; 111: 16219-16224
  • 3 Mure LS, Le HD, Benegiamo G. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 2018; 359: eaao0318
  • 4 Ralph MR, Foster RG, Davis FC. et al. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990; 247: 975-978
  • 5 Gooley JJ, Lu J, Chou TC. et al. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 2001; 4: 1165
  • 6 Travnickova-Bendova Z, Cermakian N, Reppert SM. et al. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci USA 2002; 99: 7728-7733
  • 7 Buijs RM, van Eden C, Goncharuk VD. et al. The biological clock tunes the organs of the body: Timing by hormones and the autonomic nervous system. J Endocrinol 2003; 177: 17-26
  • 8 Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257-1263
  • 9 Archer SN, Carpen JD, Gibson M. et al. Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep 2010; 33: 695-701
  • 10 Kalmbach DA, Schneider LD, Cheung J. et al. Genetic basis of chronotype in humans: insights from three landmark GWAS. Sleep 2017; 40: 2
  • 11 von Schantz M. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 2008; 87: 513-519
  • 12 Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 1995; 15: 3526-3538
  • 13 Mouret J, Coindet J, Debilly G. et al. Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms. Electroencephalogr Clin Neurophysiol 1978; 45: 402-408
  • 14 Raven F, Van der Zee EA, Meerlo P. et al. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med Rev 2018; 39: 3-11
  • 15 Tononi G, Cirelli C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014; 81: 12-34
  • 16 Hannou L, Roy PG, Roig MNB et al. Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci 2018 Dec 2 [Epub ahead of print]
  • 17 Chaudhury D, Wang LM, Colwell CS. Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms 2005; 20: 225-236
  • 18 Choi JE, Kim S, Lee J. et al. Circadian regulation by REV-ERBα mediates hippocampal E-LTP in a time-dependent manner. Exp Neurobiol 2018; 27: 344-349
  • 19 Besing RC, Rogers CO, Paul JR. et al. GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus 2017; 27: 890-898
  • 20 Jilg A, Bechstein P, Saade A. et al. Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. J Pineal Res 2019; 66: e12553
  • 21 Perreau-Lenz S, Kalsbeek A, Garidou ML. et al. Suprachiasmatic control of melatonin synthesis in rats: Inhibitory and stimulatory mechanisms. Eur J Neurosci 2003; 17: 221-228
  • 22 Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 2011; 105: 170-182
  • 23 Mendoza J, Challet E. Circadian insights into dopamine mechanisms. Neuroscience 2014; 282: 230-242
  • 24 Ferris MJ, España RA, Locke JL. et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci 2014; 111: E2751-E2759
  • 25 Hood S, Cassidy P, Cossette MP. et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci Off J Soc Neurosci 2010; 30: 14046-14058
  • 26 Hampp G, Ripperger JA, Houben T. et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 2008; 18: 678-683
  • 27 Kawarai T, Kawakami H, Yamamura Y. et al. Structure and organization of the gene encoding human dopamine transporter. Gene 1997; 195: 11-18
  • 28 Yoon SO, Chikaraishi DM. Tissue-specific transcription of the rat tyrosine hydroxylase gene requires synergy between an AP-1 motif and an overlapping E box-containing dyad. Neuron 1992; 9: 55-67
  • 29 Sleipness EP, Sorg BA, Jansen HT. Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: Dependence on the suprachiasmatic nucleus. Brain Res 2007; 1129: 34-42
  • 30 Akhisaroglu M, Kurtuncu M, Manev H. et al. Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice. Pharmacol Biochem Behav 2005; 80: 371-377
  • 31 Ozburn AR, Falcon E, Twaddle A. et al. Direct regulation of diurnal Drd3 expression and cocaine reward by NPAS2. Biol Psychiatry 2015; 77: 425-433
  • 32 Ikeda E, Matsunaga N, Kakimoto K. et al. Molecular mechanism regulating 24-hour rhythm of dopamine D3 receptor expression in mouse ventral striatum. Mol Pharmacol 2013; 83: 959-967
  • 33 Webb IC, Baltazar RM, Wang X. et al. Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. J Biol Rhythms 2009; 24: 465-476
  • 34 Abe M, Herzog ED, Yamazaki S. et al. Circadian rhythms in isolated brain regions. J Neurosci 2002; 22: 350-356
  • 35 Landgraf D, Long JE, Welsh DK. Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey. Eur J Neurosci 2016; 43: 1309-1320
  • 36 Chung S, Lee EJ, Yun S. et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 2014; 157: 858-868
  • 37 McClung CA, Sidiropoulou K, Vitaterna M. et al. Regulation of dopaminergic transmission and cocaine reward by the clock gene. Proc Natl Acad Sci 2005; 102: 9377-9381
  • 38 Spencer S, Torres-Altoro MI, Falcon E. et al. A mutation in CLOCK leads to altered dopamine receptor function. J Neurochem 2012; 123: 124-134
  • 39 Imbesi M, Yildiz S, Dirim Arslan A. et al. Dopamine receptor-mediated regulation of neuronal “clock” gene expression. Neuroscience 2009; 158: 537-544
  • 40 Ferguson SA, Rowe SA, Krupa M. et al. Prenatal exposure to the dopamine agonist SKF-38393 disrupts the timing of the initial response of the suprachiasmatic nucleus to light. Brain Res 2000; 858: 284-289
  • 41 Ciarleglio CM, Resuehr HES, McMahon DG. Interactions of the serotonin and circadian systems: Nature and nurture in rhythms and blues. Neuroscience 2011; 197: 8-16
  • 42 Cuesta M, Mendoza J, Clesse D. et al. Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 2008; 210: 501-513
  • 43 Nakamaru-Ogiso E, Miyamoto H, Hamada K. et al. Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep-wake cycles. Eur J Neurosci 2012; 35: 1762-1770
  • 44 Cuesta M, Clesse D, Pévet P. et al. New light on the serotonergic paradox in the rat circadian system. J Neurochem 2009; 110: 231-243
  • 45 Ebling FJ. The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 1996; 50: 109-132
  • 46 Brancaccio M, Patton AP, Chesham JE. et al. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 2017; 93: 1420-1435.e5
  • 47 Leone MJ, Beaule C, Marpegan L. et al. Glial and light-dependent glutamate metabolism in the suprachiasmatic nuclei. Chronobiol Int 2015; 32: 573-578
  • 48 Cagampang FRA, Rattray M, Powell JF. et al. Circadian variation of EAAC1 glutamate transporter messenger RNA in the rat suprachiasmatic nuclei. Mol Brain Res 1996; 35: 190-196
  • 49 Dzirasa K, Coque L, Sidor MM. et al. Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. J Neurosci 2010; 30: 16314-16323
  • 50 Spanagel R, Pendyala G, Abarca C. et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 2005; 11: 35-42
  • 51 Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Res 2001; 916: 172-191
  • 52 Weber M, Lauterburg T, Tobler I. et al. Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett 2004; 358: 17-20
  • 53 Lew GM. Circadian rhythms in blood pressure and norepinephrine in genetically hypertensive and normotensive rats. Gen Pharmacol Vasc Syst 1976; 7: 35-40
  • 54 Semba J, Toru M, Mataga N. Twenty-four hour rhythms of norepinephrine and serotonin in nucleus suprachiasmaticus, raphe nuclei, and locus coeruleus in the rat. Sleep 1984; 7: 211-218
  • 55 Drijfhout WJ, van der Linde AG, Kooi SE. et al. Norepinephrine release in the rat pineal gland: The input from the biological clock measured by in vivo microdialysis. J Neurochem 1996; 66: 748-755
  • 56 Andrade-Silva J, Cipolla-Neto J, Peliciari-Garcia RA. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation. Neurosci Res 2014; 81–82: 1-10
  • 57 Daiguji M, Mikuni M, Okada F. et al. The diurnal variations of dopamine-β-hydroxylase activity in the hypothalamus and locus coeruleus of the rat. Brain Res 1978; 155: 409-412
  • 58 Chevillard C, Barden N, Saavedra JM. Twenty-four hour rhythm in monoamine oxidase activity in specific areas of the rat brain stem. Brain Res 1981; 223: 205-209
  • 59 Aston-Jones G, Chen S, Zhu Y. et al. A neural circuit for circadian regulation of arousal. Nat Neurosci 2001; 4: 732-738
  • 60 Warnecke M, Oster H, Revelli JP. et al. Abnormal development of the locus coeruleus in Ear2(Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. Genes Dev 2005; 19: 614-625
  • 61 Voinescu BI, Szentagotai A, David D. Sleep disturbance, circadian preference and symptoms of adult attention deficit hyperactivity disorder (ADHD). J Neural Transm 2012; 119: 1195-1204
  • 62 Bae SM, Park JE, Lee YJ. et al. Gender difference in the association between adult attention deficit hyperactivity disorder symptoms and morningness-eveningness. Psychiatry Clin Neurosci 2010; 64: 649-651
  • 63 Claesdotter E, Cervin M, Åkerlund S. et al. The effects of ADHD on cognitive performance. Nord J Psychiatry 2018; 72: 158-163
  • 64 Pievsky MA, McGrath RE. The neurocognitive profile of attention-deficit/hyperactivity disorder: A review of meta-analyses. Arch Clin Neuropsychol 2018; 33: 143-157
  • 65 Spencer TJ, Biederman J, Madras BK. et al. In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: A focus on the dopamine transporter. Biol Psychiatry 2005; 57: 1293-1300
  • 66 Madras BK, Miller GM, Fischman AJ. The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1397-1409
  • 67 Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: A meta-analytic review. Hum Genet 2009; 126: 51-90
  • 68 Faraone SV, Perlis RH, Doyle AE. et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1313-1323
  • 69 Huang X, Wang M, Zhang Q. et al. The role of glutamate receptors in attention-deficit/hyperactivity disorder: from physiology to disease. Am J Med Genet B Neuropsychiatr Genet 2019; 180: 272-286
  • 70 Philipsen A. Differential diagnosis and comorbidity of attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) in adults. Eur Arch Psychiatry Clin Neurosci 2006; 256: i42-i46
  • 71 Coogan AN, McGowan NM. A systematic review of circadian function, chronotype and chronotherapy in attention deficit hyperactivity disorder. Atten Deficit Hyperact Disord 2017; 9: 129-147
  • 72 Chan E, Fogler JM, Hammerness PG. Treatment of attention-deficit/hyperactivity disorder in adolescents: A systematic review. JAMA 2016; 315: 1997-2008
  • 73 Wilens TE. Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 2008; 28: S46-S53
  • 74 Bymaster FP, Katner JS, Nelson DL. et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699-711
  • 75 Baird AL, Coogan AN, Kaufling J. et al. Daily methylphenidate and atomoxetine treatment impacts on clock gene protein expression in the mouse brain. Brain Res 2013; 1513: 61-71
  • 76 O’Keeffe SM, Thome J, Coogan AN. The noradrenaline reuptake inhibitor atomoxetine phase-shifts the circadian clock in mice. Neuroscience 2012; 201: 219-230
  • 77 Baird AL, Coogan AN, Siddiqui A. et al. Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol Psychiatry 2012; 17: 988-995
  • 78 Xu X, Breen G, Chen CK. et al. Association study between a polymorphism at the 3’-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. Behav Brain Funct 2010; 6: 48
  • 79 Kissling C, Retz W, Wiemann S. et al. A polymorphism at the 3′-untranslated region of the CLOCK gene is associated with adult attention-deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 333-338
  • 80 Allebrandt KV, Roenneberg T. The search for circadian clock components in humans: New perspectives for association studies. Braz J Med Biol Res 2008; 41: 716-721
  • 81 Elvevåg B, Goldberg TE. Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 2000; 14: 1-21
  • 82 Nuechterlein KH, Barch DM, Gold JM. et al. Identification of separable cognitive factors in schizophrenia. Schizophr Res 2004; 72: 29-39
  • 83 MacKenzie NE, Kowalchuk C, Agarwal SM. et al. Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Front Psychiatry 2018; 9: 622
  • 84 Laruelle M, Abi-Dargham A, van Dyck CH. et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci 1996; 93: 9235-9240
  • 85 Howes OD, Williams M, Ibrahim K. et al. Midbrain dopamine function in schizophrenia and depression: A post-mortem and positron emission tomographic imaging study. Brain 2013; 136: 3242-3251
  • 86 Egerton A, Chaddock CA, Winton-Brown TT. et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: Findings in a second cohort. Biol Psychiatry 2013; 74: 106-112
  • 87 Yang AC, Tsai SJ. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 2017; 18: 1689
  • 88 Wulff K, Dijk DJ, Middleton B. et al. Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry 2012; 200: 308-316
  • 89 Mills JN, Morgan R, Minors DS. et al. The free-running circadian rhythms of two schizophrenics. Chronobiologia 1977; 4: 353-360
  • 90 Nofzinger EA, van Kammen DP, Gilbertson MW. et al. Electroencephalographic sleep in clinically stable schizophrenic patients: Two-weeks versus six-weeks neuroleptic-free. Biol Psychiatry 1993; 33: 829-835
  • 91 Chouinard S, Poulin J, Stip E. et al. Sleep in untreated patients with schizophrenia: a meta-analysis. Schizophr Bull 2004; 30: 957-967
  • 92 Koizumi T, Suzuki T, Pillai NS. et al. Circadian patterns of hallucinatory experiences in patients with schizophrenia: potentials for chrono-pharmacology. J Psychiatr Res 2019; 117: 1-6
  • 93 Johansson AS, Owe-Larsson B, Hetta J. et al. Altered circadian clock gene expression in patients with schizophrenia. Schizophr Res 2016; 174: 17-23
  • 94 Sun HQ, Li SX, Chen FB. et al. Diurnal neurobiological alterations after exposure to clozapine in first-episode schizophrenia patients. Psychoneuroendocrinology 2016; 64: 108-116
  • 95 Takao T, Tachikawa H, Kawanishi Y. et al. CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: A preliminary study. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 2007; 17: 273-276
  • 96 Zhang J, Liao G, Liu C. et al. The association of CLOCK gene T3111C polymorphism and hPER3 gene 54-nucleotide repeat polymorphism with Chinese Han people schizophrenics. Mol Biol Rep 2011; 38: 349-354
  • 97 Kishi T, Kitajima T, Ikeda M. et al. Association study of clock gene (CLOCK) and schizophrenia and mood disorders in the Japanese population. Eur Arch Psychiatry Clin Neurosci 2009; 259: 293-297
  • 98 Liu JJ, Hukic DS, Forsell Y. et al. Depression-associated ARNTL and PER2 genetic variants in psychotic disorders. Chronobiol Int 2015; 32: 579-584
  • 99 Shi J, Wittke-Thompson JK, Badner JA. et al. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1047-1055
  • 100 Lane JM, Vlasac I, Anderson SG. et al. Genome-wide association analysis identifies novel loci for chronotype in 100 420 individuals from the UK Biobank. Nat Commun 2016; 7: 10889
  • 101 Lane JM, Liang J, Vlasac I. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat Genet 2017; 49: 274-281
  • 102 Van Rheenen TE, Lewandowski KE, Bauer IE et al. Current understandings of the trajectory and emerging correlates of cognitive impairment in bipolar disorder: An overview of evidence. Bipolar Disord 2019 Aug 13 [Epub ahead of print]
  • 103 Gold AK, Kinrys G. Treating circadian rhythm disruption in bipolar disorder. Curr Psychiatry Rep 2019; 21: 14
  • 104 Ashok AH, Marques TR, Jauhar S. et al. The dopamine hypothesis of bipolar affective disorder: The state of the art and implications for treatment. Mol Psychiatry 2017; 22: 666-679
  • 105 Harvey AG. Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry 2008; 165: 820-829
  • 106 Abreu T, Bragança M. The bipolarity of light and dark: a review on bipolar disorder and circadian cycles. J Affect Disord 2015; 185: 219-229
  • 107 Hallam KT, Olver JS, Norman TR. Melatonin sensitivity to light in monozygotic twins discordant for bipolar I disorder. Aust NZ J Psychiatry 2005; 39: 947
  • 108 Hallam KT, Olver JS, Horgan JE. et al. Low doses of lithium carbonate reduce melatonin light sensitivity in healthy volunteers. Int J Neuropsychopharmacol 2005; 8: 255-259
  • 109 Hallam KT, Olver JS, Norman TR. Effect of sodium valproate on nocturnal melatonin sensitivity to light in healthy volunteers. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2005; 30: 1400-1404
  • 110 Lewy AJ, Nurnberger JI, Wehr TA. et al. Supersensitivity to light: Possible trait marker for manic-depressive illness. Am J Psychiatry 1985; 142: 725-727
  • 111 Benedetti F, Dallaspezia S, Fulgosi MC. et al. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 2007; 144B: 631-635
  • 112 Benedetti F, Serretti A, Colombo C. et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 2003; 123B: 23-26
  • 113 Lee KY, Song JY, Kim SH. et al. Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 1196-1201
  • 114 Brasil Rocha PM, Campos SB, Neves FS. et al. Genetic association of the PERIOD3 (Per3) clock gene with bipolar disorder. Psychiatry Investig 2017; 14: 674-680
  • 115 Drago A, Monti B, De Ronchi D. et al. CRY1 Variations impacts on the depressive relapse rate in a sample of bipolar patients. Psychiatry Investig 2015; 12: 118-124
  • 116 Soria V, Martínez-Amorós E, Escaramís G. et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2010; 35: 1279-1289
  • 117 Malhi GS, Mann JJ. Depression. Lancet Lond Engl 2018; 392: 2299-2312
  • 118 Liu Y, Zhao J, Guo W. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Front Psychol 2018; 9: 2201
  • 119 Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019; 102: 75-90
  • 120 Li JZ, Bunney BG, Meng F. et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci 2013; 110: 9950-9955
  • 121 Daut RA, Fonken LK. Circadian regulation of depression: a role for serotonin. Front Neuroendocrinol 2019; 100746
  • 122 Bunney JN, Potkin SG. Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull 2008; 86: 23-32
  • 123 Souêtre E, Salvati E, Belugou JL. et al. Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res 1989; 28: 263-278
  • 124 Maglione JE, Nievergelt CM, Parimi N. et al. Associations of PER3 and RORA circadian gene polymorphisms and depressive symptoms in older adults. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry 2015; 23: 1075-1087
  • 125 Liberman AR, Kwon SB, Vu HT. et al. Circadian clock model supports molecular link between PER3 and human anxiety. Sci Rep 2017; 7: 9893
  • 126 Lavebratt C, Sjöholm LK, Soronen P. et al. CRY2 is associated with depression. PloS One 2010; 5: e9407
  • 127 Kovanen L, Saarikoski ST, Haukka J. et al. Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol 2010; 45: 303-311
  • 128 Sjöholm LK, Kovanen L, Saarikoski ST. et al. CLOCK is suggested to associate with comorbid alcohol use and depressive disorders. J Circadian Rhythms 2010; 8: 1
  • 129 Schuch JB, Genro JP, Bastos CR. et al. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am J Med Genet B Neuropsychiatr Genet 177: 181-198
  • 130 Baranger DAA, Ifrah C, Prather AA. et al. PER1 rs3027172 genotype interacts with early life stress to predict problematic alcohol use, but not reward-related ventral striatum activity. Front Psychol 2016; 7: 464
  • 131 Wulff K, Gatti S, Wettstein JG. et al. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 2010; 11: 589-599
  • 132 Wirz-Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci 2019 Jan 31 [Epub ahead of print]
  • 133 Gruber R, Grizenko N, Joober R. Delayed sleep phase syndrome, ADHD, and bright light therapy. J Clin Psychiatry 2007; 68: 337-338
  • 134 Rybak YE, McNeely HE, Mackenzie BE. et al. An open trial of light therapy in adult attention-deficit/hyperactivity disorder. J Clin Psychiatry 2006; 67: 1527-1535
  • 135 Cosgrave J, Wulff K, Gehrman P. Sleep, circadian rhythms, and schizophrenia: Where we are and where we need to go. Curr Opin Psychiatry 2018; 31: 176-182
  • 136 Geoffroy PA, Curis E, Courtin C. et al. Lithium response in bipolar disorders and core clock genes expression. World J Biol Psychiatry 2018; 19: 619-632
  • 137 Moreira J, Geoffroy PA. Lithium and bipolar disorder: Impacts from molecular to behavioural circadian rhythms. Chronobiol Int 2016; 33: 351-373
  • 138 Landgraf D, Joiner WJ, McCarthy MJ. et al. The mood stabilizer valproic acid opposes the effects of dopamine on circadian rhythms. Neuropharmacology 2016; 107: 262-270
  • 139 Coogan AN, Schenk M, Palm D. et al. Impact of adult attention deficit hyperactivity disorder and medication status on sleep/wake behavior and molecular circadian rhythms. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2019; 44: 1198-1206
  • 140 Niederhofer H. Treating ADHD with agomelatine. J Atten Disord 2012; 16: 346-348
  • 141 Mohammadi MR, Mostafavi SA, Keshavarz SA. et al. Melatonin effects in methylphenidate treated children with attention deficit hyperactivity disorder: A randomized double blind clinical trial. Iran J Psychiatry 2012; 7: 87-92