Neuroradiologie Scan 2018; 08(04): 341-384
DOI: 10.1055/a-0638-3390
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Virus- und Prioneninfektionen des Zentralnervensystems: radiologische Korrelate

Viral and prion infections of the central nervous system: radiologic-pathologic correlation
Kelly K. Koeller
,
Robert Y. Shih

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Professor Dr. med. Michael Forsting, Universitätsklinikum Essen
Further Information

Publication History

Publication Date:
18 October 2018 (online)

Diese Übersichtsarbeit gibt anhand von Fallmaterial aus den Archiven des American Institute for Radiologic Pathology einen Überblick über ein breites Spektrum von ZNS-Infektionen durch Viren und Prionen sowie über die relevanten klinischen und neuroradiologischen Merkmale. Sie versteht sich als Ergänzung eines früheren Artikels zu bakteriellen, mykotischen und parasitären ZNS-Infektionen [1].

Abstract

Viral infections of the central nervous system (CNS) range in clinical severity, with the most severe proving fatal within a matter of days. Some of the more than 100 different viruses known to affect the brain and spinal cord are neurotropic with a predilection for producing CNS infection. The host response to viral infection of the CNS is responsible for the pathophysiology and imaging findings seen in affected patients. Viral CNS infections can take the form of meningitis, encephalitis, encephalomyelitis, or, when involving the spinal cord and nerve roots, encephalomyeloradiculitis. In 1982, an infectious particle termed a prion that lacked nucleic acid and therefore was not a virus was reported to produce the fatal neurodegenerative disease Creutzfeldt-Jakob disease and related disorders. These prion diseases produce characteristic neuroimaging findings that are distinct from those seen in most viral infections. The clinical and imaging findings associated with viral CNS infection are often nonspecific, with microbiologic analysis of cerebrospinal fluid the most useful single test allowing for diagnosis of a specific viral infection. This review details the spectrum of viral CNS infections and uses case material from the archives of the American Institute for Radiologic Pathology, with a focus on the specific clinical characteristics and magnetic resonance imaging features seen in these infections. Where possible, the imaging features that allow distinction of these infections from other CNS inflammatory conditions are highlighted.

Kernaussagen
  • Für die Pathophysiologie und die Bildgebungsbefunde bei von neurotropen Viren betroffenen Patienten ist die Immunantwort des Wirtes auf die Virusinfektion des ZNS verantwortlich.

  • Die mit Virusinfektionen des ZNS einhergehenden klinischen und Bildgebungsbefunde sind häufig unspezifisch. Deshalb ist die mikrobiologische Liquoranalyse der sinnvollste Einzeltest, mit dem sich eine spezifische Virusinfektion nachweisen lässt.

  • Virusinfektionen des ZNS können sich in unterschiedlicher Form äußern, etwa als Meningitis, Enzephalitis, Enzephalomyelitis oder Enzephalomyeloradikulitis.

  • Eine Beteiligung der Temporallappen unter Aussparung des Nucleus lentiformis ist typisch für die HSE.

  • Eine Ventrikuloenzephalitis infolge einer Zerstörung der ependymalen Auskleidung des Ventrikelsystems ist charakteristisch für die Zytomegalievirusinfektion, entweder aufgrund einer kongenitalen Infektion oder einer starken Immundefizienz bei AIDS-Patienten.

  • Asymmetrisch angeordnete, bilaterale, T2w hyperintense und T1w hypointense Thalamusläsionen sind besonders charakteristisch für eine Infektion mit dem Japanische-Enzephalitis-Virus und signifikant mit einer klinischen Dystonie assoziiert.

  • Eine Reaktivierung des humanen Polyomavirus (JC-Virus) bei immungeschwächten Patienten liegt der PML zugrunde. Diese seltene und häufig tödlich verlaufende Entmarkungskrankheit ist durch das relative Fehlen eines raumfordernden Effekts, eines Ödems und einer Kontrastmittelanreicherung gekennzeichnet.

  • Prionenerkrankungen produzieren in der Neurobildgebung charakteristische Befunde, die sich von denen der meisten Virusinfektionen unterscheiden. Die diffusionsgewichtete Bildgebung ist die sensitivste neuroradiologische Technik zur Darstellung striataler und kortikaler Läsionen bei Prionenerkrankungen.

 
  • Literatur

  • 1 Shih RY, Koeller KK. Bacterial, fungal, and parasitic infections of the central nervous system: radiologic-pathologic correlation and historical perspectives. RadioGraphics 2015; 35: 1141-1169
  • 2 Shankar SK, Mahadevan A, Kovoor JM. Neuropathology of viral infections of the central nervous system. Neuroimaging Clin N Am 2008; 18: 19-39, vii
  • 3 Solbrig MV, Hasso AN, Jay CA. CNS viruses: diagnostic approach. Neuroimaging Clin N Am 2008; 18: 1-18, vii
  • 4 Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis 1998; 26: 541-553 ; quiz 554-555
  • 5 Bulakbasi N, Kocaoglu M. Central nervous system infections of herpesvirus family. Neuroimaging Clin N Am 2008; 18: 53-84, viii
  • 6 Kleinschmidt-DeMasters BK, Gilden DH. The expanding spectrum of herpesvirus infections of the nervous system. Brain Pathol 2001; 11: 440-451
  • 7 Whitley RJ. Herpes simplex encephalitis: adolescents and adults. Antiviral Res 2006; 71: 141-148
  • 8 Whitley RJ, Lakeman F. Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin Infect Dis 1995; 20: 414-420
  • 9 Bale Jr JF. Human herpesviruses and neurological disorders of childhood. Semin Pediatr Neurol 1999; 6: 278-287
  • 10 Kimberlin DW. Herpes simplex virus infections of the central nervous system. Semin Pediatr Infect Dis 2003; 14: 83-89
  • 11 Pyles RB. The association of herpes simplex virus and Alzheimer’s disease: a potential synthesis of genetic and environmental factors. Herpes 2001; 8: 64-68
  • 12 Simmons A. Herpesvirus and multiple sclerosis. Herpes 2001; 8: 60-63
  • 13 Soto NE, Straus SE. Chronic fatigue syndrome and herpesviruses: the fading evidence. Herpes 2000; 7: 46-50
  • 14 Palù G, Benetti L, Calistri A. Molecular basis of the interactions between herpes simplex viruses and HIV-1. Herpes 2001; 8: 50-55
  • 15 Whitley RJ, Gnann JW. Viral encephalitis: familiar infections and emerging pathogens. Lancet 2002; 359: 507-513
  • 16 Corey L, Spear PG. Infections with herpes simplex viruses. N Engl J Med 1986; 314: 686-691
  • 17 Rowley AH, Whitley RJ, Lakeman FD. et al. Rapid detection of herpes-simplex-virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis. Lancet 1990; 335: 440-441
  • 18 Whitley RJ, Cobbs CG, Alford Jr CA. et al. NIAD Collaborative Antiviral Study Group. Diseases that mimic herpes simplex encephalitis: diagnosis, presentation, and outcome. JAMA 1989; 262: 234-239
  • 19 Zimmerman RD, Russell EJ, Leeds NE. et al. CT in the early diagnosis of herpes simplex encephalitis. AJR Am J Roentgenol 1980; 134: 61-66
  • 20 Enzmann DR, Ranson B, Norman D. et al. Computed tomography of herpes simplex encephalitis. Radiology 1978; 129: 419-425
  • 21 Tsuchiya K, Katase S, Yoshino A. et al. Diffusion-weighted MR imaging of encephalitis. AJR Am J Roentgenol 1999; 173: 1097-1099
  • 22 Domingues RB, Fink MC, Tsanaclis AM. et al. Diagnosis of herpes simplex encephalitis by magnetic resonance imaging and polymerase chain reaction assay of cerebrospinal fluid. J Neurol Sci 1998; 157: 148-153
  • 23 Tien RD, Felsberg GJ, Osumi AK. Herpesvirus infections of the CNS: MR findings. AJR Am J Roentgenol 1993; 161: 167-176
  • 24 Lo CP, Chen CY. Neuroimaging of viral infections in infants and young children. Neuroimaging Clin N Am 2008; 18: 119-132, viii
  • 25 Vachha B, Rojas R, Prabhu SP. et al. Magnetic resonance imaging in viral and prion diseases of the central nervous system. Top Magn Reson Imaging 2014; 23: 293-302
  • 26 McGrath N, Anderson NE, Croxson MC. et al. Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. J Neurol Neurosurg Psychiatry 1997; 63: 321-326
  • 27 Ito Y, Kimura H, Yabuta Y. et al. Exacerbation of herpes simplex encephalitis after successful treatment with acyclovir. Clin Infect Dis 2000; 30: 185-187
  • 28 Whitley RJ, Kimberlin DW. Herpes simplex encephalitis: children and adolescents. Semin Pediatr Infect Dis 2005; 16: 17-23
  • 29 Tyler KL. Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret’s. Herpes 2004; 11 (Suppl. 02) 57A-64A
  • 30 Tedder DG, Ashley R, Tyler KL. et al. Herpes simplex virus infection as a cause of benign recurrent lymphocytic meningitis. Ann Intern Med 1994; 121: 334-338
  • 31 Gnann Jr JW. Varicella-zoster virus: atypical presentations and unusual complications. J Infect Dis 2002; 186 (Suppl. 01) S91-S98
  • 32 Gilden DH, Kleinschmidt-DeMasters BK, LaGuardia JJ. et al. Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med 2000; 342: 635-645
  • 33 Chiang F, Panyaping T, Tedesqui G. et al. Varicella zoster CNS vascular complications: a report of four cases and literature review. Neuroradiol J 2014; 27: 327-333
  • 34 Aygun N, Finelli DA, Rodgers MS. et al. Multifocal varicella-zoster virus leukoencephalitis in a patient with AIDS: MR findings. AJNR Am J Neuroradiol 1998; 19: 1897-1899
  • 35 Lentz D, Jordan JE, Pike GB. et al. MRI in varicella-zoster virus leukoencephalitis in the immunocompromised host. J Comput Assist Tomogr 1993; 17: 313-316
  • 36 Gray F, Bélec L, Lescs MC. et al. Varicella-zoster virus infection of the central nervous system in the acquired immune deficiency syndrome. Brain 1994; 117: 987-999
  • 37 Halling G, Giannini C, Britton JW. et al. Focal encephalitis following varicella-zoster virus reactivation without rash in a healthy immunized young adult. J Infect Dis 2014; 210: 713-716
  • 38 Portegies P, Corssmit N. Epstein-Barr virus and the nervous system. Curr Opin Neurol 2000; 13: 301-304
  • 39 Corssmit EP, Leverstein-van Hall MA, Portegies P. et al. Severe neurological complications in association with Epstein-Barr virus infection. J Neurovirol 1997; 3: 460-464
  • 40 Shian WJ, Chi CS. Epstein-Barr virus encephalitis and encephalomyelitis: MR findings. Pediatr Radiol 1996; 26: 690-693
  • 41 Abul-Kasim K, Palm L, Maly P. et al. The neuroanatomic localization of Epstein-Barr virus encephalitis may be a predictive factor for its clinical outcome: a case report and review of 100 cases in 28 reports. J Child Neurol 2009; 24: 720-726
  • 42 Hagemann G, Mentzel HJ, Weisser H. et al. Multiple reversible MR signal changes caused by Epstein-Barr virus encephalitis. AJNR Am J Neuroradiol 2006; 27: 1447-1449
  • 43 Pinto J, Carvalho S, Pereira C. et al. A case of Epstein-Barr encephalitis with some curiosities. Neuroradiol J 2015; 28: 559-561
  • 44 Karpinski NC, Yaghmai R, Barba D. et al. Case of the month: March 1999 – a 26 year old HIV positive male with dura based masses. Brain Pathol 1999; 9: 609-610
  • 45 Park JW, Choi YB, Lee KS. Detection of acute Epstein Barr virus cerebellitis using sequential brain HMPAO-SPECT imaging. Clin Neurol Neurosurg 2004; 106: 118-121
  • 46 Griffiths PD. Burden of disease associated with human cytomegalovirus and prospects for elimination by universal immunisation. Lancet Infect Dis 2012; 12: 790-798
  • 47 Roos KL. Encephalitis. Neurol Clin 1999; 17: 813-833
  • 48 Cinque P, Marenzi R, Ceresa D. Cytomegalovirus infections of the nervous system. Intervirology 1997; 40: 85-97
  • 49 Bale Jr JF . Cytomegalovirus infections. Semin Pediatr Neurol 2012; 19: 101-106
  • 50 Brecht KF, Goelz R, Bevot A. et al. Postnatal human cytomegalovirus infection in preterm infants has long-term neuropsychological sequelae. J Pediatr 2015; 166: 834-839.e1
  • 51 Capretti MG, Lanari M, Tani G. et al. Role of cerebral ultrasound and magnetic resonance imaging in newborns with congenital cytomegalovirus infection. Brain Dev 2014; 36: 203-211
  • 52 Barkovich AJ, Lindan CE. Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic considerations. AJNR Am J Neuroradiol 1994; 15: 703-715
  • 53 Post MJ, Hensley GT, Moskowitz LB. et al. Cytomegalic inclusion virus encephalitis in patients with AIDS: CT, clinical, and pathologic correlation. AJR Am J Roentgenol 1986; 146: 1229-1234
  • 54 Clifford DB, Arribas JR, Storch GA. et al. Magnetic resonance brain imaging lacks sensitivity for AIDS associated cytomegalovirus encephalitis. J Neurovirol 1996; 2: 397-403
  • 55 Renard T, Daumas-Duport B, Auffray-Calvier E. et al. Cytomegalovirus encephalitis: undescribed diffusion-weighted imaging characteristics – original aspects of cases extracted from a retrospective study, and from literature review. J Neuroradiol 2016; 43: 371-377
  • 56 Hyun JW, Kim SH, Jeong IH. et al. Teaching NeuroImages: periventricular restricted diffusion MRI in CMV ventriculitis. Neurology 2015; 84: e121
  • 57 Seok JH, Ahn K, Park HJ. Diffusion MRI findings of cytomegalovirus-associated ventriculitis: a case report. Br J Radiol 2011; 84: e179-e181
  • 58 Castillo M, Thurnher M. Imaging viral and prion infections. Semin Roentgenol 2004; 39: 482-494
  • 59 Gottumukkala RV, Romero JM, Riascos RF. et al. Imaging of the brain in patients with human immunodeficiency virus infection. Top Magn Reson Imaging 2014; 23: 275-291
  • 60 Moulignier A, Mikol J, Gonzalez-Canali G. et al. AIDS-associated cytomegalovirus infection mimicking central nervous system tumors: a diagnostic challenge. Clin Infect Dis 1996; 22: 626-631
  • 61 Guermazi A, Miaux Y, Zagdanski AM. et al. Choroid plexitis caused by cytomegalovirus in a patient with AIDS. AJNR Am J Neuroradiol 1996; 17: 1398-1399
  • 62 Wilkinson ID, Miller RF, Paley MN. et al. Cerebral proton magnetic resonance spectroscopy in cytomegalovirus encephalitis and HIV leucoencephalopathy/encephalitis. AIDS 1996; 10: 1443-1444
  • 63 Igarashi A. Epidemiology and control of Japanese encephalitis. World Health Stat Q 1992; 45: 299-305
  • 64 Nash D, Mostashari F, Fine A. et al. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 2001; 344: 1807-1814
  • 65 Hubálek Z, Halouzka J. West Nile fever: a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 1999; 5: 643-650
  • 66 Petersen LR, Roehrig JT, Hughes JM. West Nile virus encephalitis. N Engl J Med 2002; 347: 1225-1226
  • 67 Petersen LR, Marfin AA. West Nile virus: a primer for the clinician. Ann Intern Med 2002; 137: 173-179
  • 68 Handique SK. Viral infections of the central nervous system. Neuroimaging Clin N Am 2011; 21: 777-794, vii
  • 69 Rosas H, Wippold 2nd FJ. West Nile virus: case report with MR imaging findings. AJNR Am J Neuroradiol 2003; 24: 1376-1378
  • 70 Sampson BA, Armbrustmacher V. West Nile encephalitis: the neuropathology of four fatalities. Ann N Y Acad Sci 2001; 951: 172-178
  • 71 Ali M, Safriel Y, Sohi J. et al. West Nile virus infection: MR imaging findings in the nervous system. AJNR Am J Neuroradiol 2005; 26: 289-297
  • 72 Jeha LE, Sila CA, Lederman RJ. et al. West Nile virus infection: a new acute paralytic illness. Neurology 2003; 61: 55-59
  • 73 Bosanko CM, Gilroy J, Wang AM. et al. West Nile virus encephalitis involving the substantia nigra: neuroimaging and pathologic findings with literature review. Arch Neurol 2003; 60: 1448-1452
  • 74 Cerna F, Mehrad B, Luby JP. et al. St. Louis encephalitis and the substantia nigra: MR imaging evaluation. AJNR Am J Neuroradiol 1999; 20: 1281-1283
  • 75 Cam BV, Fonsmark L, Hue NB. et al. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 2001; 65: 848-851
  • 76 Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002; 10: 100-103
  • 77 World Health Organization. Dengue. Im Internet: http://www.who.int/csr/don/archive/disease/dengue_fever/en/ (Stand: 10.08.2018)
  • 78 State of Hawaii Department of Health. Dengue outbreak 2015–2016. Im Internet: http://health.hawaii.gov/docd/dengue-outbreak-2015 (Stand: 10.08.2018)
  • 79 Solomon T, Dung NM, Vaughn DW. et al. Neurological manifestations of dengue infection. Lancet 2000; 355: 1053-1059
  • 80 van Panhuis WG, Choisy M, Xiong X. et al. Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia. Proc Natl Acad Sci USA 2015; 112: 13069-13074
  • 81 Varatharaj A. Encephalitis in the clinical spectrum of dengue infection. Neurol India 2010; 58: 585-591
  • 82 Misra UK, Kalita J, Syam UK. et al. Neurological manifestations of dengue virus infection. J Neurol Sci 2006; 244: 117-122
  • 83 Soares CN, Faria LC, Peralta JM. et al. Dengue infection: neurological manifestations and cerebrospinal fluid (CSF) analysis. J Neurol Sci 2006; 249: 19-24
  • 84 Petersen LR, Jamieson DJ, Powers AM. et al. Zika virus. N Engl J Med 2016; 374: 1552-1563
  • 85 Chan JF, Choi GK, Yip CC. et al. Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease. J Infect 2016; 72: 507-524
  • 86 Meaney-Delman D, Hills SL, Williams C. et al. Zika virus infection among U.S. pregnant travelers: August 2015 – February 2016. MMWR Morb Mortal Wkly Rep 2016; 65: 211-214
  • 87 Hills SL, Russell K, Hennessey M. et al. Transmission of Zika virus through sexual contact with travelers to areas of ongoing transmission: continental United States, 2016. MMWR Morb Mortal Wkly Rep 2016; 65: 215-216
  • 88 Centers for Disease Control and Prevention. Zika and blood transfusion. Im Internet: http://www.cdc.gov/zika/transmission/blood-transfusion.html (Stand: 10.08.2018)
  • 89 Brasil P, Pereira Jr JP, Raja GabagliaC. et al. Zika virus infection in pregnant women in Rio de Janeiro: preliminary report. N Engl J Med 2016; 375 (24) 2321-2334
  • 90 Morens DM, Fauci AS. Chikungunya at the door: déjà vu all over again?. N Engl J Med 2014; 371: 885-887
  • 91 Centers for Disease Control and Prevention. 2015 provisional data for the United States. Im Internet: http://www.cdc.gov/chikungunya/geo/united-states-2015.html (Stand: 10.08.2018)
  • 92 Staples JE, Fischer M. Chikungunya virus in the Americas: what a vectorborne pathogen can do. N Engl J Med 2014; 371: 887-889
  • 93 Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 2015; 372: 1231-1239
  • 94 Ganesan K, Diwan A, Shankar SK. et al. Chikungunya encephalomyeloradiculitis: report of 2 cases with neuroimaging and 1 case with autopsy findings. AJNR Am J Neuroradiol 2008; 29: 1636-1637
  • 95 Misra UK, Kalita J. Overview: Japanese encephalitis. Prog Neurobiol 2010; 91: 108-120
  • 96 Kalita J, Misra UK, Pandey S. et al. A comparison of clinical and radiological findings in adults and children with Japanese encephalitis. Arch Neurol 2003; 60: 1760-1764
  • 97 Lam K, Tsang OT, Yung RW. et al. Japanese encephalitis in Hong Kong. Hong Kong Med J 2005; 11: 182-188
  • 98 Basumatary LJ, Raja D, Bhuyan D. et al. Clinical and radiological spectrum of Japanese encephalitis. J Neurol Sci 2013; 325: 15-21
  • 99 Handique SK, Das RR, Barman K. et al. Temporal lobe involvement in Japanese encephalitis: problems in differential diagnosis. AJNR Am J Neuroradiol 2006; 27: 1027-1031
  • 100 Kumar S, Misra UK, Kalita J. et al. MRI in Japanese encephalitis. Neuroradiology 1997; 39: 180-184
  • 101 Prakash M, Kumar S, Gupta RK. Diffusion-weighted MR imaging in Japanese encephalitis. J Comput Assist Tomogr 2004; 28: 756-761
  • 102 Matsui M, Kawano H, Matsukura M. et al. Acute transverse myelitis after Japanese B encephalitis vaccination in a 4-year-old girl. Brain Dev 2002; 24: 187-189
  • 103 Singh P, Kalra N, Ratho RK. et al. Coexistent neurocysticercosis and Japanese B encephalitis: MR imaging correlation. AJNR Am J Neuroradiol 2001; 22: 1131-1136
  • 104 Dupont JR, Earle KM. Human rabies encephalitis: a study of forty-nine fatal cases with a review of the literature. Neurology 1965; 15: 1023-1034
  • 105 Rupprecht CE, Hanlon CA, Hemachudha T. Rabies re-examined. Lancet Infect Dis 2002; 2: 327-343
  • 106 Warrell MJ, Warrell DA. Rabies and other lyssavirus diseases. Lancet 2004; 363: 959-969
  • 107 Pleasure SJ, Fischbein NJ. Correlation of clinical and neuroimaging findings in a case of rabies encephalitis. Arch Neurol 2000; 57: 1765-1769
  • 108 Laothamatas J, Hemachudha T, Mitrabhakdi E. et al. MR imaging in human rabies. AJNR Am J Neuroradiol 2003; 24: 1102-1109
  • 109 Desai RV, Jain V, Singh P. et al. Radiculomyelitic rabies: Can MR imaging help?. AJNR Am J Neuroradiol 2002; 23: 632-634
  • 110 Co SJ, Mackenzie IR, Shewchuk JR. Rabies encephalitis. RadioGraphics 2015; 35: 235-238
  • 111 Goh KJ, Tan CT, Chew NK. et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000; 342: 1229-1235
  • 112 Lim CC, Lee KE, Lee WL. et al. Nipah virus encephalitis: serial MR study of an emerging disease. Radiology 2002; 222: 219-226
  • 113 Lim CC, Sitoh YY, Hui F. et al. Nipah viral encephalitis or Japanese encephalitis? MR findings in a new zoonotic disease. AJNR Am J Neuroradiol 2000; 21: 455-461
  • 114 Sarji SA, Abdullah BJ, Goh KJ. et al. MR imaging features of Nipah encephalitis. AJR Am J Roentgenol 2000; 175: 437-442
  • 115 Lee B. Envelope-receptor interactions in Nipah virus pathobiology. Ann N Y Acad Sci 2007; 1102: 51-65
  • 116 Lim CC, Lee WL, Leo YS. et al. Late clinical and magnetic resonance imaging follow up of Nipah virus infection. J Neurol Neurosurg Psychiatry 2003; 74: 131-133
  • 117 Tan CS, Koralnik IJ. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 2010; 9: 425-437
  • 118 Buckle C, Castillo M. Use of diffusion-weighted imaging to evaluate the initial response of progressive multifocal leukoencephalopathy to highly active antiretroviral therapy: early experience. AJNR Am J Neuroradiol 2010; 31: 1031-1035
  • 119 Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy: a national estimate of frequency in systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum 2009; 60: 3761-3765
  • 120 Thurnher MM, Donovan Post MJ. Neuroimaging in the brain in HIV-1-infected patients. Neuroimag Clin N Am 2008; 18: 93-117, viii
  • 121 Olsen WL, Longo FM, Mills CM. et al. White matter disease in AIDS: findings at MR imaging. Radiology 1988; 169: 445-448
  • 122 Ernst T, Itti E, Itti L. et al. Changes in cerebral metabolism are detected prior to perfusion changes in early HIV-CMC: a coregistered 1H MRS and SPECT study. J Magn Reson Imaging 2000; 12: 859-865
  • 123 Filippi CG, Ulug AM, Ryan E. et al. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 2001; 22: 277-283
  • 124 Thurnher MM, Castillo M, Stadler A. et al. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol 2005; 26: 2275-2281
  • 125 Buchanan R, Bonthius DJ. Measles virus and associated central nervous system sequelae. Semin Pediatr Neurol 2012; 19: 107-114
  • 126 Bitnun A, Shannon P, Durward A. et al. Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin Infect Dis 1999; 29: 855-861
  • 127 Lee KY, Cho WH, Kim SH. et al. Acute encephalitis associated with measles: MRI features. Neuroradiology 2003; 45: 100-106
  • 128 Kim SJ, Kim JS, Lee DY. Neurologic outcome of acute measles encephalitis according to the MRI patterns. Pediatr Neurol 2003; 28: 281-284
  • 129 Cambonie G, Houdon L, Rivier F. et al. Infantile bilateral striatal necrosis following measles. Brain Dev 2000; 22: 221-223
  • 130 Melenotte C, Craighero F, Girard N. et al. Measles encephalitis the return: mild encephalitis with reversible splenial lesion. Int J Infect Dis 2013; 17: e72-e73
  • 131 Bulakbasi N, Kocaoglu M, Tayfun C. et al. Transient splenial lesion of the corpus callosum in clinically mild influenza-associated encephalitis/encephalopathy. AJNR Am J Neuroradiol 2006; 27: 1983-1986
  • 132 Freeman AF, Jacobsohn DA, Shulman ST. et al. A new complication of stem cell transplantation: measles inclusion body encephalitis. Pediatrics 2004; 114: e657-e660
  • 133 Mustafa MM, Weitman SD, Winick NJ. et al. Subacute measles encephalitis in the young immunocompromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature. Clin Infect Dis 1993; 16: 654-660
  • 134 Bellini WJ, Rota JS, Lowe LE. et al. Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 2005; 192: 1686-1693
  • 135 Brismar J, Gascon GG, von Steyern KV. et al. Subacute sclerosing panencephalitis: evaluation with CT and MR. AJNR Am J Neuroradiol 1996; 17: 761-772
  • 136 Trivedi R, Gupta RK, Agarawal A. et al. Assessment of white matter damage in subacute sclerosing panencephalitis using quantitative diffusion tensor MR imaging. AJNR Am J Neuroradiol 2006; 27: 1712-1716
  • 137 Shen WC, Chiu HH, Chow KC. et al. MR imaging findings of enteroviral encephaloymelitis: an outbreak in Taiwan. AJNR Am J Neuroradiol 1999; 20: 1889-1895
  • 138 Nolan MA, Craig ME, Lahra MM. et al. Survival after pulmonary edema due to enterovirus 71 encephalitis. Neurology 2003; 60: 1651-1656
  • 139 Zimmerman RD. MR imaging findings of enteroviral encephalomyelitis: an outbreak in Taiwan. AJNR Am J Neuroradiol 1999; 20: 1775-1776
  • 140 Verboon-Maciolek MA, Groenendaal F, Cowan F. et al. White matter damage in neonatal enterovirus meningoencephalitis. Neurology 2006; 66: 1267-1269
  • 141 Morishima T, Togashi T, Yokota S. et al. Encephalitis and encephalopathy associated with an influenza epidemic in Japan. Clin Infect Dis 2002; 35: 512-517
  • 142 Takanashi J, Barkovich AJ, Yamaguchi K. et al. Influenza-associated encephalitis/encephalopathy with a reversible lesion in the splenium of the corpus callosum: a case report and literature review. AJNR Am J Neuroradiol 2004; 25: 798-802
  • 143 Studahl M. Influenza virus and CNS manifestations. J Clin Virol 2003; 28: 225-232
  • 144 Kizilkilic O, Karaca S. Influenza-associated encephalitis-encephalopathy with a reversible lesion in the splenium of the corpus callosum: case report and literature review. AJNR Am J Neuroradiol 2004; 25: 1863-1864
  • 145 Kim SS, Chang KH, Kim ST. et al. Focal lesion in the splenium of the corpus callosum in epileptic patients: antiepileptic drug toxicity?. AJNR Am J Neuroradiol 1999; 20: 125-129
  • 146 Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216: 136-144
  • 147 Manuelidis L. A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 2007; 100: 897-915
  • 148 Crick FH. On protein synthesis. Symp Soc Exp Biol 1958; 12: 138-163
  • 149 Crick F. Central dogma of molecular biology. Nature 1970; 227: 561-563
  • 150 Max DT. The family that couldn’t sleep: a medical mystery. New York, NY: Random House; 2006
  • 151 Alper T, Cramp WA, Haig DA. et al. Does the agent of scrapie replicate without nucleic acid?. Nature 1967; 214: 764-766
  • 152 Griffith JS. Self-replication and scrapie. Nature 1967; 215: 1043-1044
  • 153 Nobel Prize. Stanley B. Prusiner: biographical. Im Internet: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1997/prusiner-bio.html (Stand: 10.08.2018)
  • 154 Ingram J. Fatal flaws: how a misfolded protein baffled scientists and changed the way we look at the brain. New Haven, Conn: Yale University Press; 2013
  • 155 Nobel Prize. Physiology or medicine 1976: press release. Im Internet: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1976/press.html (Stand: 10.08.2018)
  • 156 Centers for Disease Control and Prevention. Creutzfeldt-Jakob disease, classic (CJD). Im Internet: http://www.cdc.gov/prions/cjd/index.html (Stand: 10.08.2018)
  • 157 Centers for Disease Control and Prevention. Variant Creutzfeldt-Jakob disease (vCJD). Im Internet: http://www.cdc.gov/prions/vcjd/index.html (Stand: 10.08.2018)
  • 158 Gill ON, Spencer Y, Richard-Loendt A. et al. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ 2013; 347: f5675
  • 159 Ukisu R, Kushihashi T, Tanaka E. et al. Diffusion-weighted MR imaging of early-stage Creutzfeldt-Jakob disease: typical and atypical manifestations. RadioGraphics 2006; 26 (Suppl. 01) S191-S204
  • 160 Urbach H, Klisch J, Wolf HK. et al. MRI in sporadic Creutzfeldt-Jakob disease: correlation with clinical and neuropathological data. Neuroradiology 1998; 40: 65-70
  • 161 Kropp S, Schulz-Schaeffer WJ, Finkenstaedt M. et al. The Heidenhain variant of Creutzfeldt-Jakob disease. Arch Neurol 1999; 56: 55-61
  • 162 Caselli RJ. The (mis)diagnosis of Creutzfeldt-Jakob disease. Arch Neurol 2012; 69: 1554-1555
  • 163 Tzeng BC, Chen CY, Lee CC. et al. Rapid spongiform degeneration of the cerebrum and cerebellum in Creutzfeldt-Jakob encephalitis: serial MR findings. AJNR Am J Neuroradiol 1997; 18: 583-586
  • 164 Schröter A, Zerr I, Henkel K. et al. Magnetic resonance imaging in the clinical diagnosis of Creutzfeldt-Jakob disease. Arch Neurol 2000; 57: 1751-1757
  • 165 Finkenstaedt M, Szudra A, Zerr I. et al. MR imaging of Creutzfeldt-Jakob disease. Radiology 1996; 199: 793-798
  • 166 Barboriak DP, Provenzale JM, Boyko OB. MR diagnosis of Creutzfeldt-Jakob disease: significance of high signal intensity of the basal ganglia. AJR Am J Roentgenol 1994; 162: 137-140
  • 167 Meissner B, Kallenberg K, Sanchez-Juan P. et al. Isolated cortical signal increase on MR imaging as a frequent lesion pattern in sporadic Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol 2008; 29: 1519-1524
  • 168 Yi SH, Park KC, Yoon SS. et al. Relationship between clinical course and diffusion-weighted MRI findings in sporadic Creutzfeldt-Jakob disease. Neurol Sci 2008; 29: 251-255
  • 169 Murata T, Shiga Y, Higano S. et al. Conspicuity and evolution of lesions in Creutzfeldt-Jakob disease at diffusion-weighted imaging. AJNR Am J Neuroradiol 2002; 23: 1164-1172
  • 170 Sellars RJ, Collie DA, Will RJ. Progress in understanding Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol 2002; 23: 1070-1072
  • 171 Young GS, Geschwind MD, Fischbein NJ. et al. Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR Am J Neuroradiol 2005; 26: 1551-1562
  • 172 Lin YR, Young GS, Chen NK. et al. Creutzfeldt-Jakob disease involvement of rolandic cortex: a quantitative apparent diffusion coefficient evaluation. AJNR Am J Neuroradiol 2006; 27: 1755-1759
  • 173 Tschampa HJ, Mürtz P, Flacke S. et al. Thalamic involvement in sporadic Creutzfeldt-Jakob disease: a diffusion-weighted MR imaging study. AJNR Am J Neuroradiol 2003; 24: 908-915
  • 174 Mao-Draayer Y, Braff SP, Nagle KJ. et al. Emerging patterns of diffusion-weighted MR imaging in Creutzfeldt-Jakob disease: case report and review of the literature. AJNR Am J Neuroradiol 2002; 23: 550-556
  • 175 Manners DN, Parchi P, Tonon C. et al. Pathologic correlates of diffusion MRI changes in Creutzfeldt-Jakob disease. Neurology 2009; 72: 1425-1431
  • 176 Mittal S, Farmer P, Kalina P. et al. Correlation of diffusion-weighted magnetic resonance imaging with neuropathology in Creutzfeldt-Jakob disease. Arch Neurol 2002; 59: 128-134
  • 177 Galanaud D, Haik S, Linguraru MG. et al. Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases. AJNR Am J Neuroradiol 2010; 31: 1311-1318
  • 178 Lim CC, Tan K, Verma KK. et al. Combined diffusion-weighted and spectroscopic MR imaging in Creutzfeldt-Jakob disease. Magn Reson Imaging 2004; 22: 625-629
  • 179 Collins SJ, Lawson VA, Masters CL. Transmissible spongiform encephalopathies. Lancet 2004; 363: 51-61
  • 180 Meissner B, Kallenberg K, Sanchez-Juan P. et al. MRI lesion profiles in sporadic Creutzfeldt-Jakob disease. Neurology 2009; 72: 1994-2001
  • 181 Johnson RT. Prion diseases. Lancet Neurol 2005; 4: 635-642
  • 182 Fulbright RK, Hoffmann C, Lee H. et al. MR imaging of familial Creutzfeldt-Jakob disease: a blinded and controlled study. AJNR Am J Neuroradiol 2008; 29: 1638-1643
  • 183 Degnan AJ, Levy LM. Inherited forms of Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol 2013; 34: 1690-1691
  • 184 Perani D, Cortelli P, Lucignani G. et al. 18F FDG PET in fatal familial insomnia: the functional effects of thalamic lesions. Neurology 1993; 43: 2565-2569
  • 185 Haïk S, Galanaud D, Linguraru MG. et al. In vivo detection of thalamic gliosis: a pathoradiologic demonstration in familial fatal insomnia. Arch Neurol 2008; 65: 545-549
  • 186 Arata H, Takashima H, Hirano R. et al. Early clinical signs and imaging findings in Gerstmann-Sträussler-Scheinker syndrome (Pro102Leu). Neurology 2006; 66: 1672-1678
  • 187 Yamamoto S, Kinoshita M, Furukawa S. et al. Early abnormality of diffusion-weighted magnetic resonance imaging followed by brain atrophy in a case of Gerstmann-Straussler-Scheinker disease. Arch Neurol 2007; 64: 450-451
  • 188 Collinge J. Variant Creutzfeldt-Jakob disease. Lancet 1999; 354: 317-323
  • 189 Summers DM, Collie DA, Zeidler M. et al. The pulvinar sign in variant Creutzfeldt-Jakob disease. Arch Neurol 2004; 61: 446-447
  • 190 Rossetti AO, Bogousslavsky J, Glatzel M. et al. Mimicry of variant Creutzfeldt-Jakob disease by sporadic Creutzfeldt-Jakob disease: importance of the pulvinar sign. Arch Neurol 2004; 61: 445-446
  • 191 Collie DA, Summers DM, Sellar RJ. et al. Diagnosing variant Creutzfeldt-Jakob disease with the pulvinar sign: MR imaging findings in 86 neuropathologically confirmed cases. AJNR Am J Neuroradiol 2003; 24: 1560-1569
  • 192 Zeidler M, Sellar RJ, Collie DA. et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet 2000; 355: 1412-1418