Zeitschrift für Orthomolekulare Medizin 2018; 16(02): 25-29
DOI: 10.1055/a-0584-8688
Nährstoff Spezial
© Georg Thieme Verlag KG Stuttgart · New York

Coenzym Q10 – der mitochondriale Blockbuster

Uwe Gröber
Further Information

Publication History

Publication Date:
28 June 2018 (online)

Zusammenfassung

Coenzym Q10 (Ubiquinon) spielt eine zentrale Rolle bei der Energiegewinnung in den Mitochondrien. Der mitotrope Mikronährstoff zeigte in einer Studie synergistische Wirkung mit Selen bei der Reduktion der kardiovaskulären Mortalität. Coenzym Q10 hat sowohl antioxidative als auch prooxidative, für multiple physiologische Funktionen des Metaboloms essenzielle, Wirkung. Sein Blutspiegel ist bei Erkrankungen mit oxidativem Stress häufig erniedrigt. Coenzym Q10 und seine besser bioverfügbare reduzierte Form Ubiquinol haben sich in Prävention und Therapie zahlreicher Erkrankungen bewährt.

 
  • Literatur

  • 1 Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A. 1990; 87 (12) 4879-4883
  • 2 Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr 2001; 20 (06) 591-598
  • 3 Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochem Biophys Acta 1995; 1271 (01) 195-204
  • 4 Sohal RS, Forster MJ. Coenzyme Q. oxidative stress and aging. Mitochondrion 2007; 7 Suppl: S103-111
  • 5 Rötig A, Appelkvist EL, Geromel V. et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 2000; 356 ( 9227 ): 391-395
  • 6 López-Lluch G, Rios M, Lane MA. et al. Mouse liver plasma membrane redox system activity is altered by aging and modulated by calorie restriction. Age (Dordr) 2005; 27 (02) 153-160
  • 7 Linnane AW, Kios M, Vitetta L. Coenzyme Q(10)–its role as a prooxidant in the formation of superoxide anion / hydrogen peroxide and the regulation of the metabolome. Mitochondrion 2007; 7 Suppl: S51-S61
  • 8 Schmelzer C, Lindner I, Rimbach G. et al. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 2008; 32 ( 1–4 ): 179-183
  • 9 López-Lluch G, Rodríguez-Aguilera JC. et al. Is coenzyme Q a key factor in aging? Mech Ageing Dev 2010; 131 (04) 225-235
  • 10 Kalén A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids 1989; 24 (07) 579-584
  • 11 Okamoto T, Matsuya T, Fukunaga Y. et al. Human serum ubiquinol-10 levels and relationship to serum lipids. Int J Vitam Nutr Res 1989; 59 (03) 288-292
  • 12 Aberg F, Appelkvist EL, Dallner G, Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys 1992; 295 (02) 230-234
  • 13 Evans M, Baisley J, Barss S, Guthrie N. A randomized, double-blind trial on the bioavailability of two CoQ10 formulations. J Funct Foods 2009; 1: 65-73
  • 14 Gröber U. Mikronährstoffe. Metabolic Tuning – Prävention – Therapie. 3.. Aufl. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2011
  • 15 Hosoe K, Kitano M, Kishida H. et al. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol 2007; 47 (01) 19-28
  • 16 Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 2006; 40 (05) 445-453
  • 17 Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 2007; 7 Suppl: S78-88
  • 18 Shults CW, Oakes D, Kieburtz K. et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 2002; 59 (10) 1541-1550
  • 19 Shults CW, Flint Beal M, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol 2004; 188 (02) 491-494
  • 20 Miles MV. The uptake and distribution of coenzyme Q10. Mitochondrion 2007; 7 Suppl: S72-S77
  • 21 Yamashita S, Yamamoto Y. Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stress. Anal Biochem 1997; 250 (01) 66-73
  • 22 Alehagen U, Johansson P, Björnstedt M. et al. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol 2013; 167 (05) 1860-1866
  • 23 Alehagen U, Alexander J, Aaseth J. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial. PLoS One 2016; 11 (07) e0157541
  • 24 Xia L, Björnstedt M, Nordman T. et al. Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway. Eur J Biochem 2001; 268 (05) 1486-1490
  • 25 Björnstedt M, Nordman T, Olsson JM. Extramitochondrial reduction of ubiquinone by flavoenzymes. Methods Enzymol 2004 378. 131-138
  • 26 Nordman T, Xia L, Björkhem-Bergman L. et al. Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase. Biofactors 2003; 18 ( 1 – 4 ): 45-50
  • 27 Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 2006; 40 (05) 445-453
  • 28 Garrido-Maraver J, Cordero MD, Oropesa-Ávila M. Coenzyme q10 therapy. Mol Syndromol 2014; 5 ( 3 – 4 ): 187-197
  • 29 Geocadin RG, Wijdicks E, Armstrong MJ. et al. Practice guideline summary: Reducing brain injury following cardiopulmonary resuscitation. Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2017; 88 (22) 2141-2149
  • 30 Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P.Coenzyme. Q10 Supplementation in Aging and Disease. Front Physiol 2018; 9: 44 . doi: 10.3389 / fphys.2018.00044