Subscribe to RSS
DOI: 10.1055/a-2684-3689
The Glucocorticoid System: A Multifaceted Regulator of Mitochondrial Function, Endothelial Homeostasis, and Intestinal Barrier Integrity
Authors
Abstract
Critical illness initiates a cascade of systemic disturbances—including energy deficits, oxidative stress, endothelial injury, and intestinal barrier dysfunction. Mitochondria, the vascular endothelium, and the intestinal barrier are three critical interfaces that facilitate the restoration of homeostasis. These processes are regulated by the glucocorticoid (GC) signaling system, specifically through the glucocorticoid receptor α (GRα), which coordinates cellular metabolism, immune modulation, and vascular integrity. This integrated signaling network offers therapeutic targets to prevent or reduce organ dysfunction and damage. Mitochondria function as metabolic hubs, transforming substrates mobilized by GC–GRα into adenosine triphosphate (ATP) via oxidative phosphorylation (OXPHOS), while also regulating calcium homeostasis, reactive oxygen species (ROS) signaling, and apoptosis. However, excessive ROS generation during critical illness can disrupt cellular energetics, leading to systemic inflammation and critical illness-related corticosteroid insufficiency (CIRCI). GC–GRα signaling helps mitigate mitochondrial dysfunction by promoting mitochondrial biogenesis, enhancing antioxidant defenses, and maintaining redox balance, which is essential for metabolic recovery and survival. The vascular endothelium and the intestinal barrier are the two most extensive and vulnerable surfaces affected during critical illness, and their preservation or restoration is vital for recovery. These active interfaces are essential for maintaining vascular integrity, immune balance, and metabolic stability—functions that are often severely impaired in critical illness. The vascular endothelium, which lines the entire circulatory system, plays a crucial role in regulating vascular tone, permeability, and immune cell recruitment through mediators like nitric oxide and prostacyclin. In conditions such as sepsis and acute respiratory distress syndrome (ARDS), inflammatory injury damages the endothelial glycocalyx and tight junctions, leading to microvascular leakage and widespread inflammation. Activation of GC–GRα pathways helps restore endothelial integrity by inhibiting nuclear factor-κB (NF-κB), lowering proinflammatory cytokine production, increasing tight junction proteins, and boosting endothelial nitric oxide synthase (eNOS) activity—mechanisms that collectively prevent thrombosis and edema. The intestinal barrier, maintained by tight junctions and gut microbiota, is essential for nutrient absorption and mucosal immune defense. During critical illness, gut dysbiosis—marked by a depletion of beneficial commensals and overgrowth of pathogenic species—compromises barrier integrity, increases intestinal permeability, and promotes bacterial translocation. GC–GRα signaling plays a key role in preserving the intestinal barrier by regulating tight junctions, lowering permeability, and affecting microbiota composition. Combining GC therapy with microbiota-focused interventions offers hope for reducing inflammation, supporting recovery, and improving survival in critically ill patients.
Keywords
critical illness - glucocorticoid receptor-α - endothelium - intestinal barrier - mitochondria - oxidative stressContributors' Statement
G.U.M. and A-M.G.P. conceived and equally contributed to the manuscript writing.
Note
In addition to the previously used sources,[196] [197] [198] we searched Google Scholar and Consensus for literature search, and manual searching of articles, including reference lists of cited publications, was also performed to avoid omissions. The search was completed in April 2025.
Publication History
Received: 30 April 2025
Accepted: 14 August 2025
Article published online:
17 September 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Meduri GU. Glucocorticoids and GRα signaling in critical illness: phase-specific homeostatic corrections across systems. Semin Respir Crit Care Med 2025; (e-pub ahead of print). 11: 161
- 2 Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol 2020; 16 (03) 133-144
- 3 Zhou H, Mehta S, Srivastava SP. et al. Endothelial cell-glucocorticoid receptor interactions and regulation of Wnt signaling. JCI Insight 2020; 5 (03) e131384
- 4 Felinski EA, Cox AE, Phillips BE, Antonetti DA. Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element. Exp Eye Res 2008; 86 (06) 867-878
- 5 Gerö D, Szabo C. Glucocorticoids suppress mitochondrial oxidant production via upregulation of uncoupling protein 2 in hyperglycemic endothelial cells. PLoS ONE 2016; 11 (04) e0154813
- 6 Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the intestinal epithelial tight junction barrier. Front Immunol 2021; 12: 767456
- 7 Zanza C, Thangathurai J, Audo A. et al. Oxidative stress in critical care and vitamins supplement therapy: “a beneficial care enhancing”. Eur Rev Med Pharmacol Sci 2019; 23 (17) 7703-7712
- 8 Huang EY, Inoue T, Leone VA. et al. Using corticosteroids to reshape the gut microbiome: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2015; 21 (05) 963-972
- 9 Muzzi C, Watanabe N, Twomey E. et al. The glucocorticoid receptor in intestinal epithelial cells alleviates colitis and associated colorectal cancer in mice. Cell Mol Gastroenterol Hepatol 2021; 11 (05) 1505-1518
- 10 Meduri GU, Psarra A-M, Amrein K. Chapter 23: General adaptation in critical illness 2: The glucocorticoid signaling system as a master rheostat of homeostatic corrections in concerted action with mitochondrial and essential micronutrient support. In: Fink G. ed Handbook of Stress: Stress, Immunology and Inflammation. San Diego: Elsevier; 2024. ;Vol. 5:pp. 263-287
- 11 Nowicki S. Biology: The Science of Life. . Course Guidebook. The Great Courses. 2004
- 12 Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017; 86: 715-748
- 13 Sagan L. On the origin of mitosing cells. J Theor Biol 1967; 14 (03) 255-274
- 14 Margulis L. Symbiosis in Cell Evolution: Life and its Environment on the Early Earth. NASA; 1981
- 15 Nylen ES, Muller B. Endocrine changes in critical illness. J Intensive Care Med 2004; 19 (02) 67-82
- 16 Meduri GU. The role of the host defence response in the progression and outcome of ARDS: pathophysiological correlations and response to glucocorticoid treatment. Eur Respir J 1996; 9 (12) 2650-2670
- 17 Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 2018; 49: 72-85
- 18 Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 2013; 24 (03) 109-119
- 19 Zang Q, Maass DL, Tsai SJ, Horton JW. Cardiac mitochondrial damage and inflammation responses in sepsis. Surg Infect (Larchmt) 2007; 8 (01) 41-54
- 20 Zhang ZW, Cheng J, Xu F. et al. Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 2011; 63 (07) 560-565
- 21 Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion 2016; 30: 105-116
- 22 Zhang X, Zink F, Hezel F. et al. Metabolic substrate utilization in stress-induced immune cells. Intensive Care Med Exp 2020; 8 (Suppl. 01) 28
- 23 Williams NC, O'Neill LAJ. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front Immunol 2018; 9: 141
- 24 Schmid D, Burmester GR, Tripmacher R, Kuhnke A, Buttgereit F. Bioenergetics of human peripheral blood mononuclear cell metabolism in quiescent, activated, and glucocorticoid-treated states. Biosci Rep 2000; 20 (04) 289-302
- 25 Hortová-Kohoutková M, Lázničková P, Frič J. How immune-cell fate and function are determined by metabolic pathway choice: The bioenergetics underlying the immune response. BioEssays 2021; 43 (02) e2000067
- 26 Agoro R, Taleb M, Quesniaux VFJ, Mura C. Cell iron status influences macrophage polarization. PLoS ONE 2018; 13 (05) e0196921
- 27 Ballinger SW. Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem Soc Trans 2013; 41 (01) 111-117
- 28 Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 2012; 148 (06) 1145-1159
- 29 Psarra A-MG, Sekeris CE. Nuclear receptors and other nuclear transcription factors in mitochondria: regulatory molecules in a new environment. Biochim Biophys Acta 2008; 1783 (01) 1-11
- 30 Anerillas C, Abdelmohsen K, Gorospe M. Regulation of senescence traits by MAPKs. Geroscience 2020; 42 (02) 397-408
- 31 Gorman GS, Chinnery PF, DiMauro S. et al. Mitochondrial diseases. Nat Rev Dis Primers 2016; 2 (01) 16080
- 32 Lightowlers RN, Taylor RW, Turnbull DM. Mutations causing mitochondrial disease: What is new and what challenges remain?. Science 2015; 349 (6255) 1494-1499
- 33 Kc S, Cárcamo JM, Golde DW. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 2005; 19 (12) 1657-1667
- 34 Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK. Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care 2012; 16 (02) R66
- 35 Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13 (12) 780-788
- 36 Silwal P, Kim JK, Kim YJ, Jo E-K. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Front Immunol 2020; 11: 1649
- 37 Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 2011; 107 (01) 57-64
- 38 Paupe V, Prudent J. New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochem Biophys Res Commun 2018; 500 (01) 75-86
- 39 Picca A, Lezza AMS, Leeuwenburgh C. et al. Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders. Rejuvenation Res 2018; 21 (04) 350-359
- 40 Haden DW, Suliman HB, Carraway MS. et al. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 2007; 176 (08) 768-777
- 41 Du J, Wang Y, Hunter R. et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci U S A 2009; 106 (09) 3543-3548
- 42 Lee SR, Kim HK, Song IS. et al. Glucocorticoids and their receptors: insights into specific roles in mitochondria. Prog Biophys Mol Biol 2013; 112 (1-2): 44-54
- 43 Schumacker PT, Gillespie MN, Nakahira K. et al. Mitochondria in lung biology and pathology: more than just a powerhouse. Am J Physiol Lung Cell Mol Physiol 2014; 306 (11) L962-L974
- 44 Picard M, McManus MJ, Gray JD. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A 2015; 112 (48) E6614-E6623
- 45 Kasahara E, Inoue M. Cross-talk between HPA-axis-increased glucocorticoids and mitochondrial stress determines immune responses and clinical manifestations of patients with sepsis. Redox Rep 2015; 20 (01) 1-10
- 46 Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 2004; 364 (9433) 545-548
- 47 Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev 2017; 2017: 5985209
- 48 Nakamori Y, Koh T, Ogura H. et al. Enhanced expression of intranuclear NF-kappa B in primed polymorphonuclear leukocytes in systemic inflammatory response syndrome patients. J Trauma 2003; 54 (02) 253-260
- 49 Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol 2018; 7: 81-86
- 50 Kraft BD, Chen L, Suliman HB, Piantadosi CA, Welty-Wolf KE. Peripheral blood mononuclear cells demonstrate mitochondrial damage clearance during sepsis. Crit Care Med 2019; 47 (05) 651-658
- 51 Costa NA, Gut AL, de Souza Dorna M. et al. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. J Crit Care 2014; 29 (02) 249-252
- 52 Hsiao SY, Kung CT, Su CM. et al. Impact of oxidative stress on treatment outcomes in adult patients with sepsis: A prospective study. Medicine (Baltimore) 2020; 99 (26) e20872
- 53 Miliaraki M, Briassoulis P, Ilia S. et al. Oxidant/Antioxidant status is impaired in sepsis and is related to anti-apoptotic, inflammatory, and innate immunity alterations. Antioxidants 2022; 11 (02) 231
- 54 Ayala JC, Grismaldo A, Sequeda-Castañeda LG, Aristizábal-Pachón AF, Morales L. Oxidative stress in ICU patients: ROS as mortality long-term predictor. Antioxidants 2021; 10 (12) 1912
- 55 Lasky-Su J, Dahlin A, Litonjua AA. et al. Metabolome alterations in severe critical illness and vitamin D status. Crit Care 2017; 21 (01) 193
- 56 Oudemans-van Straaten HM, Elbers PWG, Spoelstra-de Man AME. How to give vitamin C a cautious but fair chance in severe sepsis. Editorial Chest 2017; 151 (06) 1199-1200
- 57 Carré JE, Orban JC, Re L. et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 2010; 182 (06) 745-751
- 58 Brealey D, Brand M, Hargreaves I. et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002; 360 (9328) 219-223
- 59 Matkovich SJ, Al Khiami B, Efimov IR. et al. Widespread down-regulation of cardiac mitochondrial and sarcomeric genes in patients with sepsis. Crit Care Med 2017; 45 (03) 407-414
- 60 Lin Y, Xu Y, Zhang Z. Sepsis-induced myocardial dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting mitochondria. Inflammation 2020; 43 (04) 1184-1200
- 61 Supinski GS, Schroder EA, Callahan LA. Mitochondria and critical illness. Chest 2020; 157 (02) 310-322
- 62 Li C, Wang W, Xie SS. et al. The programmed cell death of macrophages, endothelial cells, and tubular epithelial cells in sepsis-AKI. Front Med (Lausanne) 2021; 8: 796724
- 63 Ow CPC, Trask-Marino A, Betrie AH, Evans RG, May CN, Lankadeva YR. Targeting oxidative stress in septic acute kidney injury: from theory to practice. J Clin Med 2021; 10 (17) 3798
- 64 Hoffmann RF, Jonker MR, Brandenburg SM. et al. Mitochondrial dysfunction increases pro-inflammatory cytokine production and impairs repair and corticosteroid responsiveness in lung epithelium. Sci Rep 2019; 9 (01) 15047
- 65 Fu C, Weng S, Liu D. et al. Review on the role of mitochondrial dysfunction in septic encephalopathy. Cell Biochem Biophys 2025; 83: 135-145
- 66 Zhang Q, Raoof M, Chen Y. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464 (7285) 104-107
- 67 Nakahira K, Kyung S-Y, Rogers AJ. et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 2013; 10 (12) e1001577 , discussion e1001577
- 68 Johansson PI, Nakahira K, Rogers AJ. et al. Plasma mitochondrial DNA and metabolomic alterations in severe critical illness. Crit Care 2018; 22 (01) 360
- 69 Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv 2005; 5 (02) 94-111
- 70 Forceville X, Aouizerate P, Guizard M. Septic shock and selenium administration [In French]. Therapie 2001; 56 (06) 653-661
- 71 Wang CN, Duan GL, Liu YJ. et al. Overproduction of nitric oxide by endothelial cells and macrophages contributes to mitochondrial oxidative stress in adrenocortical cells and adrenal insufficiency during endotoxemia. Free Radic Biol Med 2015; 83: 31-40
- 72 Psarra AM, Sekeris CE. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochim Biophys Acta 2009; 1787 (05) 431-436
- 73 Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP. Mitochondria as key components of the stress response. Trends Endocrinol Metab 2007; 18 (05) 190-198
- 74 Głombik K, Detka J, Budziszewska B. Hormonal regulation of oxidative phosphorylation in the brain in health and disease. Cells 2021; 10 (11) 2937
- 75 Sekeris CE. The mitochondrial genome: a possible primary site of action of steroid hormones. In Vivo 1990; 4 (05) 317-320
- 76 Scheller K, Sekeris CE. The effects of steroid hormones on the transcription of genes encoding enzymes of oxidative phosphorylation. Exp Physiol 2003; 88 (01) 129-140
- 77 Psarra AM, Sekeris CE. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta 2011; 1813 (10) 1814-1821
- 78 Mootha VK, Bunkenborg J, Olsen JV. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003; 115 (05) 629-640
- 79 Knutti D, Kralli A. PGC-1, a versatile coactivator. Trends Endocrinol Metab 2001; 12 (08) 360-365
- 80 Karra AG, Sioutopoulou A, Gorgogietas V, Samiotaki M, Panayotou G, Psarra AG. Proteomic analysis of the mitochondrial glucocorticoid receptor interacting proteins reveals pyruvate dehydrogenase and mitochondrial 60 kDa heat shock protein as potent binding partners. J Proteomics 2022; 257: 104509
- 81 Deng Y, Lin A, Lai C. et al. Combined inhibition of importin-β and PBR enhances osteogenic differentiation of BMSCs by reducing nuclear accumulation of glucocorticoid receptor and promoting its mitochondrial translocation. J Steroid Biochem Mol Biol 2025; 250: 106731
- 82 Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD. The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem 2011; 286 (34) 30152-30160
- 83 Toneatto J, Guber S, Charó NL. et al. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 2013; 126 (Pt 23): 5357-5368
- 84 Makino Y, Okamoto K, Yoshikawa N. et al. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest 1996; 98 (11) 2469-2477
- 85 Psarra AM, Hermann S, Panayotou G, Spyrou G. Interaction of mitochondrial thioredoxin with glucocorticoid receptor and NF-kappaB modulates glucocorticoid receptor and NF-kappaB signalling in HEK-293 cells. Biochem J 2009; 422 (03) 521-531
- 86 Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells 2013; 2 (02) 202-223
- 87 Kokkinopoulou I, Moutsatsou P. Mitochondrial glucocorticoid receptors and their actions. Int J Mol Sci 2021; 22 (11) 6054
- 88 Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5 (07) 374-381
- 89 Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol 2014; 10 (05) 303-310
- 90 Dang R, Hou X, Huang X. et al. Effects of the glucocorticoid-mediated mitochondrial translocation of glucocorticoid receptors on oxidative stress and pyroptosis in BV-2 microglia. J Mol Neurosci 2024; 74 (01) 30
- 91 Sharma VK, Singh TG, Mehta V. Stressed mitochondria: A target to intrude alzheimer's disease. Mitochondrion 2021; 59: 48-57
- 92 Choi GE, Han HJ. Glucocorticoid impairs mitochondrial quality control in neurons. Neurobiol Dis 2021; 152: 105301
- 93 Simoes DC, Psarra A-MG, Mauad T. et al. Glucocorticoid and estrogen receptors are reduced in mitochondria of lung epithelial cells in asthma. PLoS ONE 2012; 7 (06) e39183
- 94 Polito A, Sonneville R, Guidoux C. et al. Changes in CRH and ACTH synthesis during experimental and human septic shock. PLoS ONE 2011; 6 (11) e25905
- 95 Peeters B, Meersseman P, Vander Perre S. et al. Adrenocortical function during prolonged critical illness and beyond: a prospective observational study. Intensive Care Med 2018; 44 (10) 1720-1729
- 96 Jennewein C, Tran N, Kanczkowski W. et al. Mortality of septic mice strongly correlates with adrenal gland inflammation. Crit Care Med 2015; 44: e190-e199
- 97 Liu MY, Zhu LJ, Zhou QG. Neuronal nitric oxide synthase is an endogenous negative regulator of glucocorticoid receptor in the hippocampus. Neurol Sci 2013; 34 (07) 1167-1172
- 98 Hutchison KA, Matić G, Meshinchi S, Bresnick EH, Pratt WB. Redox manipulation of DNA binding activity and BuGR epitope reactivity of the glucocorticoid receptor. J Biol Chem 1991; 266 (16) 10505-10509
- 99 Okamoto K, Tanaka H, Ogawa H. et al. Redox-dependent regulation of nuclear import of the glucocorticoid receptor. J Biol Chem 1999; 274 (15) 10363-10371
- 100 Galigniana MD, Piwien-Pilipuk G, Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol Pharmacol 1999; 55 (02) 317-323
- 101 Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 2004; 315 (01) 240-245
- 102 Meja KK, Rajendrasozhan S, Adenuga D. et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol 2008; 39 (03) 312-323
- 103 Ehrchen J, Steinmüller L, Barczyk K. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 2007; 109 (03) 1265-1274
- 104 Long F, Wang YX, Liu L, Zhou J, Cui RY, Jiang CL. Rapid nongenomic inhibitory effects of glucocorticoids on phagocytosis and superoxide anion production by macrophages. Steroids 2005; 70 (01) 55-61
- 105 Choi HM, Jo SK, Kim SH. et al. Glucocorticoids attenuate septic acute kidney injury. Biochem Biophys Res Commun 2013; 435 (04) 678-684
- 106 Li Y, Cui X, Li X. et al. Risk of death does not alter the efficacy of hydrocortisone therapy in a mouse E. coli pneumonia model: risk and corticosteroids in sepsis. Intensive Care Med 2008; 34 (03) 568-577
- 107 Bouazza Y, Sennoun N, Strub C. et al. Comparative effects of recombinant human activated protein C and dexamethasone in experimental septic shock. Intensive Care Med 2011; 37 (11) 1857-1864
- 108 Keh D, Boehnke T, Weber-Cartens S. et al. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med 2003; 167 (04) 512-520
- 109 Kaufmann I, Briegel J, Schliephake F. et al. Stress doses of hydrocortisone in septic shock: beneficial effects on opsonization-dependent neutrophil functions. Intensive Care Med 2008; 34 (02) 344-349
- 110 Stio M, Martinesi M, Bruni S. et al. The vitamin D analogue TX 527 blocks NF-kappaB activation in peripheral blood mononuclear cells of patients with Crohn's disease. J Steroid Biochem Mol Biol 2007; 103 (01) 51-60
- 111 Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 2013; 132 (05) 1033-1044
- 112 Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 2013; 34 (09) 518-530
- 113 Reichardt SD, Amouret A, Muzzi C. et al. The role of glucocorticoids in inflammatory diseases. Cells 2021; 10 (11) 2921
- 114 Smoak K, Cidlowski JA. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 2006; 26 (23) 9126-9135
- 115 Witteveen E, Wieske L, van der Poll T. et al; Molecular Diagnosis and Risk Stratification of Sepsis (MARS) Consortium. Increased early systemic inflammation in ICU-acquired weakness; a prospective observational cohort study. Crit Care Med 2017; 45 (06) 972-979
- 116 Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care 2017; 21 (01) 300
- 117 Vandewalle J, Libert C. Glucocorticoids in sepsis: to be or not to be. Front Immunol 2020; 11: 1318
- 118 Zielińska KA, Van Moortel L, Opdenakker G, De Bosscher K, Van den Steen PE. Endothelial response to glucocorticoids in inflammatory diseases. Front Immunol 2016; 7: 592
- 119 Tyml K. Vitamin C and microvascular dysfunction in systemic inflammation. Antioxidants 2017; 6 (03) 49
- 120 Ding J, Song D, Ye X, Liu SF. A pivotal role of endothelial-specific NF-kappaB signaling in the pathogenesis of septic shock and septic vascular dysfunction. J Immunol 2009; 183 (06) 4031-4038
- 121 Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000; 21 (01) 55-89
- 122 Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19 (01) 26
- 123 Hue CD, Cho FS, Cao S, Dale Bass CR, Meaney DF, Morrison III B. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab 2015; 35 (07) 1191-1198
- 124 Joffre J, Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid Redox Signal 2021; 35 (15) 1291-1307
- 125 Sinclair SE, Bijoy J, Golden E, Carratu P, Umberger R, Meduri GU. Interleukin-8 and soluble intercellular adhesion molecule-1 during acute respiratory distress syndrome and in response to prolonged methylprednisolone treatment. Minerva Pneumol 2006; 45 (02) 93-103
- 126 Hendrickson CM, Matthay MA. Endothelial biomarkers in human sepsis: pathogenesis and prognosis for ARDS. Pulm Circ 2018; 8 (02) 2045894018769876
- 127 Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial damage in acute respiratory distress syndrome. Int J Mol Sci 2020; 21 (22) 8793
- 128 Parikh SM. Dysregulation of the angiopoietin-Tie-2 axis in sepsis and ARDS. Virulence 2013; 4 (06) 517-524
- 129 Ricciuto DR, dos Santos CC, Hawkes M. et al. Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. Crit Care Med 2011; 39 (04) 702-710
- 130 Grodzielski M, Cidlowski JA. Glucocorticoids regulate thrombopoiesis by remodeling the megakaryocyte transcriptome. J Thromb Haemost 2023; 21 (11) 3207-3223
- 131 Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev 2017; 2017: 5985209
- 132 De Backer D, Donadello K, Taccone FS, Ospina-Tascon G, Salgado D, Vincent JL. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care 2011; 1: 27
- 133 Hughes CG, Pandharipande PP, Thompson JL. et al. Endothelial activation and blood-brain barrier injury as risk factors for delirium in critically ill patients. Crit Care Med 2016; 44 (09) e809-e817
- 134 Hughes CG, Patel MB, Brummel NE. et al. Relationships between markers of neurologic and endothelial injury during critical illness and long-term cognitive impairment and disability. Intensive Care Med 2018; 44 (03) 345-355
- 135 Ehlenbach WJ, Sonnen JA, Montine TJ, Larson EB. Association between sepsis and microvascular brain injury. Crit Care Med 2019; 47 (11) 1531-1538
- 136 Hingorani AD, Cross J, Kharbanda RK. et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 2000; 102 (09) 994-999
- 137 Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. Crit Care 2014; 18 (04) 460
- 138 Kanczkowski W, Sue M, Zacharowski K, Reincke M, Bornstein SR. The role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis. Mol Cell Endocrinol 2015; 408: 241-248
- 139 Ware LB, Conner ER, Matthay MA. von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Crit Care Med 2001; 29 (12) 2325-2331
- 140 van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, Geelen SP. Plasma vascular endothelial growth factor in severe sepsis. Shock 2005; 23 (01) 35-38
- 141 Sapru A, Calfee CS, Liu KD. et al; NHLBI ARDS Network. Plasma soluble thrombomodulin levels are associated with mortality in the acute respiratory distress syndrome. Intensive Care Med 2015; 41 (03) 470-478
- 142 Mutunga M, Fulton B, Bullock R. et al. Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med 2001; 163 (01) 195-200
- 143 Moussa MD, Santonocito C, Fagnoul D. et al. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med 2015; 41 (02) 231-238
- 144 De Backer D, Donadello K, Sakr Y. et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013; 41 (03) 791-799
- 145 Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A 1992; 89 (21) 9991-9995
- 146 Goodwin JE, Feng Y, Velazquez H, Sessa WC. Endothelial glucocorticoid receptor is required for protection against sepsis. Proc Natl Acad Sci U S A 2013; 110 (01) 306-311
- 147 Salvador E, Shityakov S, Förster C. Glucocorticoids and endothelial cell barrier function. Cell Tissue Res 2014; 355 (03) 597-605
- 148 Zhou G, Kamenos G, Pendem S, Wilson JX, Wu F. Ascorbate protects against vascular leakage in cecal ligation and puncture-induced septic peritonitis. Am J Physiol Regul Integr Comp Physiol 2012; 302 (04) R409-R416
- 149 Meduri GU, Psarra A-M, Amrein K. General adaptation in critical illness 2: The glucocorticoid signaling system as a master rheostat of homeostatic corrections in concerted action with mitochondrial and essential micronutrient support. In: Fink G. ed Handbook of Stress: Stress, Immunology and Inflammation. San Diego: CA: Elsevier; 263-287
- 150 Hadoke PW, Macdonald L, Logie JJ, Small GR, Dover AR, Walker BR. Intra-vascular glucocorticoid metabolism as a modulator of vascular structure and function. Cell Mol Life Sci 2006; 63 (05) 565-578
- 151 Vettorazzi S, Bode C, Dejager L. et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun 2015; 6: 7796
- 152 Kim H, Lee JM, Park JS. et al. Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood-brain barrier. Biochem Biophys Res Commun 2008; 372 (01) 243-248
- 153 Fürst R, Schroeder T, Eilken HM. et al. MAPK phosphatase-1 represents a novel anti-inflammatory target of glucocorticoids in the human endothelium. FASEB J 2007; 21 (01) 74-80
- 154 Ferrelli F, Pastore D, Capuani B. et al. Serum glucocorticoid inducible kinase (SGK)-1 protects endothelial cells against oxidative stress and apoptosis induced by hyperglycaemia. Acta Diabetol 2015; 52 (01) 55-64
- 155 Basello K, Pacifici F, Capuani B. et al. Serum- and glucocorticoid-inducible kinase 1 delay the onset of endothelial senescence by directly interacting with human telomerase reverse transcriptase. Rejuvenation Res 2016; 19 (01) 79-89
- 156 Hahn RT, Hoppstädter J, Hirschfelder K. et al. Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation. Atherosclerosis 2014; 234 (02) 391-400
- 157 Limbourg FP, Huang Z, Plumier JC. et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J Clin Invest 2002; 110 (11) 1729-1738
- 158 Hafezi-Moghadam A, Simoncini T, Yang Z. et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 2002; 8 (05) 473-479
- 159 Hoppstädter J, Diesel B, Linnenberger R. et al. Amplified host defense by toll-like receptor-mediated downregulation of the glucocorticoid-induced leucine zipper (GILZ) in macrophages. Front Immunol 2019; 9: 3111
- 160 Cappetta D, Bereshchenko O, Cianflone E. et al. Glucocorticoid-induced leucine zipper (GILZ) in cardiovascular health and disease. Cells 2021; 10 (08) 2155
- 161 Cruz-Topete D, He B, Xu X, Cidlowski JA. Krüppel-like factor 13 is a major mediator of glucocorticoid receptor signaling in cardiomyocytes and protects these cells from DNA damage and death. J Biol Chem 2016; 291 (37) 19374-19386
- 162 Vandewalle J, Timmermans S, Paakinaho V. et al. Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metab 2021; 33 (09) 1763-1776.e5
- 163 Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35 (35) 85-96
- 164 Aziz M, Wang P. Glucocorticoid resistance and hyperlactatemia: A tag team to worsen sepsis. Cell Metab 2021; 33 (09) 1717-1718
- 165 Chappell D, Jacob M, Hofmann-Kiefer K. et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology 2007; 107 (05) 776-784
- 166 Chappell D, Hofmann-Kiefer K, Jacob M. et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 2009; 104 (01) 78-89
- 167 Aytac HO, Iskit AB, Sayek I. Dexamethasone effects on vascular flow and organ injury in septic mice. J Surg Res 2014; 188 (02) 496-502
- 168 Yang S, Zhang L. Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol 2004; 2 (01) 1-12
- 169 Radomski MW, Palmer RM, Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A 1990; 87 (24) 10043-10047
- 170 Büchele GL, Silva E, Ospina-Tascón GA, Vincent JL, De Backer D. Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med 2009; 37 (04) 1341-1347
- 171 Rinaldi S, Adembri C, Grechi S, De Gaudio AR. Low-dose hydrocortisone during severe sepsis: effects on microalbuminuria. Crit Care Med 2006; 34 (09) 2334-2339
- 172 Meduri GU, Headley S, Tolley E, Shelby M, Stentz F, Postlethwaite A. Plasma and BAL cytokine response to corticosteroid rescue treatment in late ARDS. Chest 1995; 108 (05) 1315-1325
- 173 Seam N, Meduri GU, Wang H. et al. Effects of methylprednisolone infusion on markers of inflammation, coagulation, and angiogenesis in early acute respiratory distress syndrome. Crit Care Med 2012; 40 (02) 495-501
- 174 Fadel F, André-Grégoire G, Gravez B. et al. Aldosterone and vascular mineralocorticoid receptors in murine endotoxic and human septic shock. Crit Care Med 2017; 45 (09) e954-e962
- 175 Annane D, Pastores SM, Rochwerg B. et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med 2017; 43 (12) 1751-1763
- 176 Al-Sadi R, Ye D, Dokladny K, Ma TY. Mechanism of IL-1β-induced increase in intestinal epithelial tight junction permeability. J Immunol 2008; 180 (08) 5653-5661
- 177 Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal barrier in human health and disease. Int J Environ Res Public Health 2021; 18 (23) 12836
- 178 Ma C, Wang F, Zhu J. et al. 18Beta-glycyrrhetinic acid attenuates H2O2-induced oxidative damage and apoptosis in intestinal epithelial cells via activating the PI3K/Akt signaling pathway. Antioxidants 2024; 13 (04) 468
- 179 Meduri GU, Confalonieri M, Chaudhuri D, Rochwerg B, Meibohm B. Chapter 24: Prolonged glucocorticoid treatment in ARDS: pathobiological rationale and pharmacological principles. In: Fink G. ed Handbook of Stress: Stress, Immunology and Inflammation. Academic Press; 2024: 289-323
- 180 Leoni G, Alam A, Neumann P-A. et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2013; 123 (01) 443-454
- 181 Zanza C, Romenskaya T, Thangathurai D. et al. Microbiome in critical care: an unconventional and unknown ally. Curr Med Chem 2022; 29 (18) 3179-3188
- 182 Göke MN, Schneider M, Beil W, Manns MP. Differential glucocorticoid effects on repair mechanisms and NF-kappaB activity in the intestinal epithelium. Regul Pept 2002; 105 (03) 203-214
- 183 Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional roles of B-vitamins in the gut and gut microbiome. Mol Nutr Food Res 2020; 64 (18) e2000426
- 184 Shimizu K, Ojima M, Ogura H. Gut microbiota and probiotics/synbiotics for modulation of immunity in critically ill patients. Nutrients 2021; 13 (07) 2439
- 185 Su H, Kang Q, Wang H. et al. Effects of glucocorticoids combined with probiotics in treating Crohn's disease on inflammatory factors and intestinal microflora. Exp Ther Med 2018; 16 (04) 2999-3003
- 186 Inceu A-I, Neag MA, Cătinean A. et al. The effects of probiotic Bacillus spores on dexamethasone-treated rats. Int J Mol Sci 2023; 24 (20) 15111
- 187 Chargo NJ, Schepper JD, Rios-Arce N. et al. Lactobacillus reuteri 6475 prevents bone loss in a clinically relevant oral model of glucocorticoid-induced osteoporosis in male CD-1 mice. JBMR Plus 2023; 7 (12) e10805
- 188 Schepper J, Rios-Acre N, Collins F, Parameswaran N, McCabe L. Alterations to the gut microbiome prevent glucocorticoid induced osteoporosis. FASEB J 2019; 35: 801-820
- 189 Hadizadeh M, Hamidi GA, Salami M. Probiotic supplementation improves the cognitive function and the anxiety-like behaviors in the stressed rats. Iran J Basic Med Sci 2019; 22 (05) 506-514
- 190 Ait-Belgnaoui A, Payard I, Rolland C. et al. Bifidobacterium longum and Lactobacillus helveticus synergistically suppress stress-related visceral hypersensitivity through hypothalamic-pituitary-adrenal axis modulation. J Neurogastroenterol Motil 2018; 24 (01) 138-146
- 191 Tiwari S, Paramanik V. Lactobacillus fermentum ATCC 9338 supplementation prevents depressive-like behaviors through glucocorticoid receptor and N-methyl-D-aspartate2b in chronic unpredictable mild stress mouse model. Mol Neurobiol 2025; 62 (06) 7927-7944
- 192 Rao X, Liu L, Wang H. et al. Regulation of gut microbiota disrupts the glucocorticoid receptor pathway and inflammation-related pathways in the mouse hippocampus. Exp Neurobiol 2021; 30 (01) 59-72
- 193 Schneider S, Wright CM, Heuckeroth RO. Unexpected roles for the second brain: enteric nervous system as master regulator of bowel function. Annu Rev Physiol 2019; 81 (01) 235-259
- 194 Jeon H, Lee D, Kim J-Y, Shim J-J, Lee J-H. Limosilactobacillus reuteri HY7503 and its cellular proteins alleviate endothelial dysfunction by increasing nitric oxide production and regulating cell adhesion molecule levels. Int J Mol Sci 2024; 25 (20) 11326
- 195 Meduri GU. Synergistic glucocorticoids, vitamins, and microbiome strategies for gut protection in critical illness. Explor Endocr Metab Dis 2025; 2: 101432
- 196 Annane D, Pastores SM, Arlt W. et al. Critical illness-related corticosteroid insufficiency (CIRCI): A narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Crit Care Med 2017; 45 (12) 2089-2098
- 197 Talabér G, Boldizsár F, Bartis D. et al. Mitochondrial translocation of the glucocorticoid receptor in double-positive thymocytes correlates with their sensitivity to glucocorticoid-induced apoptosis. Int Immunol 2009; 21 (11) 1269-1276
- 198 Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E. Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J Exp Med 2006; 203 (01) 189-201
- 199 Pyle A, Burn DJ, Gordon C, Swan C, Chinnery PF, Baudouin SV. Fall in circulating mononuclear cell mitochondrial DNA content in human sepsis. Intensive Care Med 2010; 36 (06) 956-962
- 200 Esquerdo KF, Sharma NK, Brunialti MKC. et al. Inflammasome gene profile is modulated in septic patients, with a greater magnitude in non-survivors. Clin Exp Immunol 2017; 189 (02) 232-240
- 201 Hakim A, Barnes PJ, Adcock IM, Usmani OS. Importin-7 mediates glucocorticoid receptor nuclear import and is impaired by oxidative stress, leading to glucocorticoid insensitivity. FASEB J 2013; 27 (11) 4510-4519
- 202 Meduri GU, Chrousos GP. General adaptation in critical illness: Glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front Endocrinol (Lausanne) 2020; 11: 161