Semin Thromb Hemost 2004; 30(2): 185-195
DOI: 10.1055/s-2004-825632
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Onco-Retroviral and Lentiviral Vector-Based Gene Therapy for Hemophilia: Preclinical Studies

An Van Damme1 , 2 , Marinee K.L Chuah2 , Désiré Collen2 , Thierry VandenDriessche2
  • 1Professor, Center for Transgene Technology and Gene Therapy, University of Leuven, Flanders Interuniversity Institute for Biotechnology (VIB), University Hospital Gasthuisberg, Leuven, Belgium
  • 2Center for Transgene Technology and Gene Therapy, University of Leuven, Flanders Interuniversity Institute for Biotechnology (VIB), University Hospital Gasthuisberg, Leuven, Belgium
Further Information

Publication History

Publication Date:
07 May 2004 (online)

Hemophilia A and B gene therapy requires long-term and stable expression of coagulation factor VIII (FVIII) or factor IX (FIX), respectively, and would need to compare favorably with protein replacement therapy. Onco-retroviral and lentiviral vectors are attractive vectors for gene therapy of hemophilia. These vectors have the potential for long-term expression because they integrate stably in the target cell genome. Whereas onco-retroviral vectors can only transduce dividing cells, lentiviral vectors can transduce a broad variety of cell types irrespective of cell division. Several preclinical and clinical studies have explored the use of onco-retroviral and, more recently, lentiviral vectors for gene therapy of hemophilia A or B. Both ex vivo and in vivo gene therapy approaches have been evaluated, resulting in therapeutic FVIII or FIX levels in preclinical animal models. Whereas in vivo gene therapy using onco-retroviral or lentiviral vectors often led to long-term FVIII or FIX expression from transduced hepatocytes, ex vivo approaches were generally hampered by either low or transient expression of FVIII or FIX levels in vivo and/or inefficient engraftment. Furthermore, immune responses against the transgene product remain a major issue that must be resolved before the full potential of these vectors eventually can be exploited clinically. Nevertheless, the continued progress in vector design combined with a better understanding of vector biology may ultimately yield more effective gene therapy approaches using these integrating vectors.

REFERENCES

  • 1 Koster T, Blann A D, Briet E, Vandenbroucke J P, Rosendaal F R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis.  Lancet. 1995;  345 152-155
  • 2 Bi L, Lawler A M, Antonarakis S E, High K A, Gearhart J D, Kazazian Jr H H. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A.  Nat Genet. 1995;  10 119-121
  • 3 Bi L, Sarkar R, Naas T et al.. Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies.  Blood. 1996;  88 3446-3450
  • 4 Kundu R K, Sangiorgi F, Wu L Y et al.. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice.  Blood. 1998;  92 168-174
  • 5 Wang L, Zoppe M, Hackeng T M, Griffin J H, Lee K F, Verma I M. A factor IX-deficient mouse model for hemophilia B gene therapy.  Proc Natl Acad Sci USA. 1997;  94 11563-11566
  • 6 Evans J P, Brinkhous K M, Brayer G D, Reisner H M, High K A. Canine hemophilia B resulting from a point mutation with unusual consequences.  Proc Natl Acad Sci USA. 1989;  86 10095-10099
  • 7 Giles A R, Tinlin S, Hoogendoorn H, Greenwood P, Greenwood R. Development of factor VIII:C antibodies in dogs with hemophilia A (factor VIII:C deficiency).  Blood. 1984;  63 451-456
  • 8 Do H, Healey J F, Waller E K, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells.  J Biol Chem. 1999;  274 19587-19592
  • 9 Marshall E. Gene therapy on trial.  Science. 2000;  288 951-957
  • 10 Arruda V R, Fields P A, Milner R et al.. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males.  Mol Ther. 2001;  4 586-592
  • 11 Pastore L, Morral N, Zhou H et al.. Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors.  Hum Gene Ther. 1999;  10 1773-1781
  • 12 Zhang W W, Josephs S F, Zhou J et al.. Development and application of a minimal-adenoviral vector system for gene therapy of hemophilia A.  Thromb Haemost. 1999;  82 562-571
  • 13 Raper S E, Yudkoff M, Chirmule N et al.. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency.  Hum Gene Ther. 2002;  13 163-175
  • 14 Miller A D. Cell-surface receptors for retroviruses and implications for gene transfer.  Proc Natl Acad Sci USA. 1996;  93 11407-11413
  • 15 Coffin J M. Molecular mechanisms of nucleic acid integration.  J Med Virol. 1990;  31 43-49
  • 16 Coffin J M. Retroviral DNA integration.  Dev Biol Stand. 1992;  76 141-151
  • 17 Pannell D, Ellis J. Silencing of gene expression: implications for design of retrovirus vectors.  Rev Med Virol. 2001;  11 205-217
  • 18 Rivella S, Callegari J A, May C, Tan C W, Sadelain M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites.  J Virol. 2000;  74 4679-4687
  • 19 Cosset F L, Russell S J. Targeting retrovirus entry.  Gene Ther. 1996;  3 946-956
  • 20 Russell S J, Cosset F L. Modifying the host range properties of retroviral vectors.  J Gene Med. 1999;  1 300-311
  • 21 Cosset F L, Takeuchi Y, Battini J L, Weiss R A, Collins M K. High-titer packaging cells producing recombinant retroviruses resistant to human serum.  J Virol. 1995;  69 7430-7436
  • 22 Takeuchi Y, Porter C D, Strahan K M et al.. Sensitization of cells and retroviruses to human serum by (alpha 1-3) galactosyltransferase.  Nature. 1996;  379 85-88
  • 23 DePolo N J, Harkleroad C E, Bodner M et al.. The resistance of retroviral vectors produced from human cells to serum inactivation in vivo and in vitro is primate species dependent.  J Virol. 1999;  73 6708-6714
  • 24 Miller A D. Retrovirus packaging cells.  Hum Gene Ther. 1990;  1 5-14
  • 25 Axelrod J H, Read M S, Brinkhous K M, Verma I M. Phenotypic correction of factor IX deficiency in skin fibroblasts of hemophilic dogs.  Proc Natl Acad Sci USA. 1990;  87 5173-5177
  • 26 Hoeben R C, van der Jagt R C, Schoute F et al.. Expression of functional factor VIII in primary human skin fibroblasts after retrovirus-mediated gene transfer.  J Biol Chem. 1990;  265 7318-7323
  • 27 St Louis D, Verma I M. An alternative approach to somatic cell gene therapy.  Proc Natl Acad Sci USA. 1988;  85 3150-3154
  • 28 Page S M, Brownlee G G. An ex vivo keratinocyte model for gene therapy of hemophilia B.  J Invest Dermatol. 1997;  109 139-145
  • 29 Fenjves E S, Yao S N, Kurachi K, Taichman L B. Loss of expression of a retrovirus-transduced gene in human keratinocytes.  J Invest Dermatol. 1996;  106 576-578
  • 30 Fakharzadeh S S, Zhang Y, Sarkar R, Kazazian Jr H H. Correction of the coagulation defect in hemophilia A mice through factor VIII expression in skin.  Blood. 2000;  95 2799-2805
  • 31 Chuah M KL, VandenDriessche T, Morgan R A. Development and analysis of retroviral vectors expressing human factor VIII as a potential gene therapy for hemophilia A.  Hum Gene Ther. 1995;  6 1363-1377
  • 32 Dwarki V J, Belloni P, Nijar T et al.. Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice.  Proc Natl Acad Sci USA. 1995;  92 1023-1027
  • 33 Yao S N, Wilson J M, Nabel E G, Kurachi S, Hachiya H L, Kurachi K. Expression of human factor IX in rat capillary endothelial cells: toward somatic gene therapy for hemophilia B.  Proc Natl Acad Sci USA. 1991;  88 8101-8105
  • 34 Yao S N, Kurachi K. Expression of human factor IX in mice after injection of genetically modified myoblasts.  Proc Natl Acad Sci USA. 1992;  89 3357-3361
  • 35 Yao S N, Smith K J, Kurachi K. Primary myoblast-mediated gene transfer: persistent expression of human factor IX in mice.  Gene Ther. 1994;  1 99-107
  • 36 Hortelano G, Al-Hendy A, Ofosu F A, Chang P L. Delivery of human factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B.  Blood. 1996;  87 5095-5103
  • 37 Hao Q-L, Malik P, Salazar R, Tang H, Gordon E M, Kohn D B. Expression of biologically active human factor IX in human hematopoietic cells after retroviral vector-mediated gene transduction.  Hum Gene Ther. 1995;  6 873-880
  • 38 Hoeben R C, Einerhand M P, Briet E, van Ormondt H, Valerio D, van der Eb A J. Toward gene therapy in haemophilia A: retrovirus-mediated transfer of a factor VIII gene into murine haematopoietic progenitor cells.  Thromb Haemost. 1992;  67 341-345
  • 39 Evans G L, Morgan R A. Genetic induction of immune tolerance to human clotting factor VIII in a mouse model for hemophilia A.  Proc Natl Acad Sci USA. 1998;  95 5734-5739
  • 40 Chuah M KL, Brems H, Vanslembrouck V, Collen D, VandenDriessche T. Bone marrow stromal cells as targets for gene therapy of hemophilia A.  Hum Gene Ther. 1998;  9 353-365
  • 41 Chuah M KL, Damme A V, Zwinnen H et al.. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice.  Hum Gene Ther. 2000;  11 729-738
  • 42 Gitschier J, Wood W I, Goralka T M et al.. Characterization of the human factor VIII gene.  Nature. 1984;  312 326-330
  • 43 Toole J J, Knopf J L, Wozney J M et al.. Molecular cloning of a cDNA encoding human antihaemophilic factor.  Nature. 1984;  312 342-347
  • 44 Wood W I, Capon D J, Simonsen C C et al.. Expression of active human factor VIII from recombinant DNA clones.  Nature. 1984;  312 330-337
  • 45 Klinge J, Ananyeva N M, Hauser C A, Saenko E L. Hemophilia A-from basic science to clinical practice.  Semin Thromb Hemost. 2002;  28 309-322
  • 46 Lenting P J, van Mourik J A, Mertens K. The life cycle of coagulation factor VIII in view of its structure and function.  Blood. 1998;  92 3983-3996
  • 47 Saenko E L, Ananyeva N M, Moayeri M, Ramezani A, Hawley R G. Development of improved factor VIII molecules and new gene transfer approaches for hemophilia A.  Curr Gene Ther. 2003;  3 27-41
  • 48 Israel D I, Kaufman R J. Retroviral-mediated transfer and amplification of a functional human factor VIII gene.  Blood. 1990;  75 1074-1080
  • 49 Lynch C M, Israel D I, Kaufman R J, Miller A D. Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production.  Hum Gene Ther. 1993;  4 259-272
  • 50 Hoeben R C, Fallaux F J, Cramer S J et al.. Expression of the blood-clotting factor-VIII cDNA is repressed by a transcriptional silencer located in its coding region.  Blood. 1995;  85 2447-2454
  • 51 Chuah M K, VandenDriessche T, Morgan R A. Development and analysis of retroviral vectors expressing human factor VIII as a potential gene therapy for hemophilia A.  Hum Gene Ther. 1995;  6 1363-1377
  • 52 Tonn T, Herder C, Becker S, Seifried E, Grez M. Generation and characterization of human hematopoietic cell lines expressing factor VIII.  J Hematother Stem Cell Res. 2002;  11 695-704
  • 53 Tiede A, Eder M, von Depka M et al.. Recombinant factor VIII expression in hematopoietic cells following lentiviral transduction.  Gene Ther. 2003;  10 1917-1925
  • 54 Jiang Y, Jahagirdar B N, Reinhardt R L et al.. Pluripotency of mesenchymal stem cells derived from adult marrow.  Nature. 2002;  418 41-49
  • 55 Hurwitz D R, Kirchgesser M, Merrill W et al.. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells.  Hum Gene Ther. 1997;  8 137-156
  • 56 Pittenger M F, Mackay A M, Beck S C et al.. Multilineage potential of adult human mesenchymal stem cells.  Science. 1999;  284 143-146
  • 57 Prockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues.  Science. 1997;  276 71-74
  • 58 Drize N J, Surin V L, Gan O I, Deryugina E I, Chertkov J L. Gene therapy model for stromal precursor cells of hematopoietic microenvironment.  Leukemia. 1992;  6(suppl 3) 174S-175S
  • 59 Nolta J A, Hanley M B, Kohn D B. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors.  Blood. 1994;  83 3041-3051
  • 60 Van Damme A, Chuah M K, Dell'accio F et al.. Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats.  Haemophilia. 2003;  9 94-103
  • 61 Garcia-Martin C, Chuah M K, Van Damme A et al.. Therapeutic levels of human factor VIII in mice implanted with encapsulated cells: potential for gene therapy of haemophilia A.  J Gene Med. 2002;  4 215-223
  • 62 Dai Y, Roman M, Naviaux R K, Verma I M. Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo.  Proc Natl Acad Sci USA. 1992;  89 10892-10895
  • 63 Hortelano G, Wang L, Xu N, Ofosu F A. Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: concurrent tumourigenesis.  Haemophilia. 2001;  7 207-214
  • 64 Krebsbach P H, Zhang K, Malik A K, Kurachi K. Bone marrow stromal cells as a genetic platform for systemic delivery of therapeutic proteins in vivo: human factor IX model.  J Gene Med. 2003;  5 11-17
  • 65 Cherington V, Chiang G G, McGrath C A et al.. Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion.  Hum Gene Ther. 1998;  9 1397-1407
  • 66 Gerrard A J, Hudson D L, Brownlee G G, Watt F M. Towards gene therapy for haemophilia B using primary human keratinocytes.  Nat Genet. 1993;  3 180-183
  • 67 Hoeben R C, Fallaux F J, Tilburg N HV et al.. Toward gene therapy for hemophilia A: long-term persistence of factor VIII-secreting fibroblasts after transplantation into immunodeficient mice.  Hum Gene Ther. 1993;  4 179-186
  • 68 Zhou J M, Qiu X F, Lu D R, Lu J Y, Xue J L. Long-term expression of human factor IX cDNA in rabbits.  Sci China B. 1993;  36 1333-1341
  • 69 Chen L, Nelson D M, Zheng Z, Morgan R A. Ex vivo fibroblast transduction in rabbits results in long-term (>600 days) factor IX expression in a small percentage of animals.  Hum Gene Ther. 1998;  9 2341-2351
  • 70 Qiu X, Lu D, Zhou J et al.. Implantation of autologous skin fibroblast genetically modified to secrete clotting factor IX partially corrects the hemorrhagic tendencies in two hemophilia B patients.  Chin Med J (Engl). 1996;  109 832-839
  • 71 VandenDriessche T, Vanslembrouck V, Goovaerts I et al.. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice.  Proc Natl Acad Sci USA. 1999;  96 10379-10384
  • 72 Greengard J S, Jolly D J. Animal testing of retroviral-mediated gene therapy for factor VIII deficiency.  Thromb Haemost. 1999;  82 555-561
  • 73 Powell J S, Ragni M V, White II G C et al.. Phase I trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion.  Blood. 2003;  102 2038-2045
  • 74 Chuah M KL, Collen D, VandenDriessche T. Clinical gene transfer studies for hemophilia A.  Semin Thromb Hemost. 2004;  30 249-256
  • 75 Kay M A, Rothenberg S, Landen C N et al.. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs.  Science. 1993;  262 117-119
  • 76 Xu L, Gao C, Sands M S et al.. Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine factor IX for hemophilia B.  Blood. 2003;  101 3924-3932
  • 77 Vigna E, Naldini L. Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy.  J Gene Med. 2000;  2 308-316
  • 78 Follenzi A, Ailles L E, Bakovic S, Geuna M, Naldini L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences.  Nat Genet. 2000;  25 217-222
  • 79 Zufferey R, Donello J E, Trono D, Hope T J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors.  J Virol. 1999;  73 2886-2892
  • 80 Kootstra N A, Matsumura R, Verma I M. Efficient production of human FVIII in hemophilic mice using lentiviral vectors.  Mol Ther. 2003;  7 623-631
  • 81 Park F, Ohashi K, Kay M A. Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver.  Blood. 2000;  96 1173-1176
  • 82 VandenDriessche T, Thorrez L, Naldini L et al.. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo.  Blood. 2002;  100 813-822
  • 83 Stein C S, Kang Y, Sauter S L et al.. In vivo treatment of hemophilia and mucopolysaccharidosis type vii using nonprimate lentiviral vectors.  Mol Ther. 2001;  3 850-856
  • 84 Park F, Kay M A. Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo.  Mol Ther. 2001;  4 164-173
  • 85 Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors.  Hum Gene Ther. 2002;  13 243-260
  • 86 Tsui L V, Kelly M, Zayek N et al.. Production of human clotting factor IX without toxicity in mice after vascular delivery of a lentiviral vector.  Nat Biotechnol. 2002;  20 53-57
  • 87 Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al.. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.  Science. 2000;  288 669-672
  • 88 Hacein-Bey S, Yates F, de Villartay J P, Fischer A, Cavazzana-Calvo M. Gene therapy of severe combined immunodeficiencies: from mice to humans.  Neth J Med. 2002;  60 299-301
  • 89 Hacein-Bey-Abina S, von Kalle C, Schmidt M et al.. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency.  N Engl J Med. 2003;  348 255-256
  • 90 Rabbitts T H, Bucher K, Chung G, Grutz G, Warren A, Yamada Y. The effect of chromosomal translocations in acute leukemias: the LMO2 paradigm in transcription and development.  Cancer Res. 1999;  59 1794s-1798s
  • 91 Davenport J, Neale G A, Goorha R. Identification of genes potentially involved in LMO2-induced leukemogenesis.  Leukemia. 2000;  14 1986-1996
  • 92 Buckley R H. Gene therapy for SCID-a complication after remarkable progress.  Lancet. 2002;  360 1185-1186
  • 93 Wu X, Li Y, Crise B, Burgess S M. Transcription start regions in the human genome are favored targets for MLV integration.  Science. 2003;  300 1749-1751
  • 94 Trono D. Virology. Picking the right spot.  Science. 2003;  300 1670-1671
  • 95 Lin Y, Chang L, Solovey A, Healey J F, Lollar P, Hebbel R P. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A.  Blood. 2002;  99 457-462
  • 96 Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie C M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.  Blood. 2001;  98 2615-2625

Thierry VandenDriesschePh.D. 

Center for Transgene Technology and Gene Therapy, University of Leuven, Flanders Interuniversity Institute for Biotechnology (VIB), University Hospital Gasthuisberg

Herestraat 49, B-3000 Leuven, Belgium

Email: thierry.vandendriessche@med.kuleuven.ac.be

    >