Dtsch Med Wochenschr 2003; 128(8): 389-393
DOI: 10.1055/s-2003-37377
Übersichten
© Georg Thieme Verlag Stuttgart · New York

Rolle von nukleären Rezeptoren beim hepatischen und intestinalen Medikamententransport[1]

Role of nuclear receptors in hepatic and intestinal drug transportG. A. Kullak-Ublick1,2 , D. Jung1,2 , P. J. Meier1
  • 1Abteilung für Klinische Pharmakologie und Toxikologie und
  • 2Abteilung für Gastroenterologie und Hepatologie, Departement für Innere Medizin (Ärztlicher Direktor: Prof. Dr. med M. Fried), Universitätsspital Zürich
Further Information

Publication History

eingereicht: 20.8.2002

akzeptiert: 30.10.2002

Publication Date:
20 February 2003 (online)

Zusammenfassung

Die Bioverfügbarkeit von Medikamenten wird wesentlich durch die intestinale Resorption und den hepatischen „first-pass”-Effekt determiniert. Hierbei muss die betreffende Substanz mehrere Membranbarrieren überwinden, um in den systemischen Blutkreislauf zu gelangen. Dazu gehören die luminale (dem Darmlumen zugewandte) und die basolaterale (der Blutseite zugewandte) Membran der Darmepithelzelle. Diejenigen Substanzen, die einem hohen hepatischen „first-pass”-Effekt unterliegen, werden über die basolaterale (sinusoidale) Hepatozytenmembran aufgenommen, in der Leberzelle biotransformiert und über die kanalikuläre (apikale) Membran in die Galle ausgeschieden. Jede der genannten Membranbarrieren besitzt spezialisierte Transportproteine, die den Stofftransport über die Membran bewerkstelligen. Eines der am besten charakterisierten Transporter ist das P-Glykoprotein MDR1 („multidrug resistance gene product”, Gensymbol ABCB1). MDR1 vermittelt in der apikalen Membran von Enterozyten den Rücktransport von Xenobiotika in das Darmlumen, noch bevor sie das Pfortaderblut erreichen. Eine Zunahme der MDR1-Proteinmenge kann die Bioverfügbarkeit von Substanzen, die MDR1-Substrate darstellen, entsprechend reduzieren. Beispiele hierfür sind Digoxin, Ciclosporin und Paclitaxel. Viele Xenobiotika wie zum Beispiel Rifampicin, Phenobarbital, Statine und Johanniskraut sind in der Lage, die MDR1 Expression transkriptionell zu induzieren. Das MDR1-Gen bindet den nukleären Rezeptor PXR („pregnane X receptor”), der nach Aktivierung durch die genannten Liganden die Gentranskription steigert. Weitere durch PXR regulierte Gene sind das Cytochrom P450 3A4, der Digoxintransporter OATP2 so ok?(Slc21a5) der basolateralen Hepatozytenmembran und die Xenobiotika-Effluxpumpe MRP2 (ABCC2) der kanalikulären Hepatozytenmembran. PXR ist somit ein entscheidender „Xenosensor”, der je nach Xenobiotikum die entgiftenden Transport- und Enzymsysteme des Darms und der Leber aktivieren kann.

Summary

Major determinants of the bioavailability of drugs are the degree of intestinal absorption and hepatic first-pass effect. Drugs need to overcome several membrane barriers before reaching the systemic circulation. These include the luminal (facing the intestine) and basolateral (facing the blood) membrane of intestinal epithelial cells. Substances that undergo first-pass metabolism are taken up across the basolateral (sinusoidal) hepatocyte membrane, biotransformed within hepatocytes and excreted across the canalicular (apical) membrane into bile. Each of these membrane barriers possesses an array of specialized transport proteins that mediate substrate transport across the membrane. One of the best characterized transporters is the P-glycoprotein MDR1 (multidrug resistance gene product, gene symbol ABCB1). MDR1 is expressed at the apical surface of enterocytes where it mediates the efflux of xenobiotics into the intestinal lumen before these can access the portal circulation. An increase in MDR1 expression reduces the bioavailability of drugs that are MDR1 substrates. Examples include digoxin, cyclosporin A and paclitaxel. Numerous xenobiotics such as rifampin, phenobarbital, statins and St. John’s wort induce MDR1 transcriptionally. The MDR1 gene binds the nuclear receptor PXR (pregnane X receptor) that induces gene transcription following activation by these ligands. Other PXR regulated genes include cytochrome P450 3A4, the digoxin transporter Oatp2 (Slc21a5) of the basolateral and the xenobiotic efflux pump MRP2 (ABCC2) of the canalicular hepatocyte membrane. PXR is thus an important „xenosensor” that mediates drug induced activation of the detoxifying transport and enzyme systems in liver and intestine.

1 Unterstützung: Schweizerischer Nationalfonds (632-062773)

Literatur

  • 1 Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf D J, Suchy F J. Human bile salt export pump (BSEP) promoter is transactivated by the farnesoid X receptor/bile acid receptor (FXR/BAR).  J Biol Chem. 2001;  276 28 857-28 865
  • 2 Blumberg B, Sabbagh W, Juguilon H. et al . SXR, a novel steroid and xenobiotic-sensing nuclear receptor.  Genes Dev. 1998;  12 3195-3205
  • 3 Chawla A, Repa J J, Evans R M, Mangelsdorf D J. Nuclear receptors and lipid physiology: opening the X-files.  Science. 2001;  294 1866-1870
  • 4 Chawla A, Saez E, Evans R M. „Don’t know much bile-ology”.  Cell. 2000;  103 1-4
  • 5 Cherrington N J, Hartley D P, Li N, Johnson D R, Klaassen C D. Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats.  J Pharmacol Exp Ther. 2002;  300 97-104
  • 6 Costet P, Luo Y, Wang N, Tall A R. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor.  J Biol Chem. 2000;  275 28 240-28 245
  • 7 Craddock A L, Love M W, Daniel R W. et al . Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter.  Am J Physiol. 1998;  274 G157-G169
  • 8 Denson L A, Auld K L, Schiek D S, McClure M H, Mangelsdorf D J, Karpen S J. Interleukin-1β suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation.  J Biol Chem. 2000;  275 8835-8843
  • 9 Denson L A, Sturm E, Echevarria W. et al . The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp.  Gastroenterology. 2001;  121 140-147
  • 10 Dürr D, Stieger B, Kullak-Ublick G A. et al . St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4.  Clin Pharmacol Ther. 2000;  68 598-604
  • 11 Fitzgerald M L, Moore K J, Freeman M W. Nuclear hormone receptors and cholesterol trafficking: The orphans find a new home.  J Mol Med. 2002;  80 271-281
  • 12 Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin.  J Biol Chem. 2001;  276 14 581-14 587
  • 13 Greiner B, Eichelbaum M, Fritz P. et al . The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin.  J Clin Invest. 1999;  104 147-153
  • 14 Grober J, Zaghini I, Fujii H. et al . Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer.  J Biol Chem. 1999;  274 29 749-29 754
  • 15 Guo G L, Staudinger J, Ogura K, Klaassen C D. Induction of rat organic anion transporting polypeptide 2 by pregnenolone-16α-carbonitrile is via interaction with pregnane X receptor.  Mol Pharmacol. 2002;  61 832-839
  • 16 Hagenbuch N, Reichel C, Stieger B. et al . Effect of phenobarbital on the expression of bile salt and organic anion transporters of rat liver.  J Hepatol. 2001;  34 881-887
  • 17 Johne A, Brockmoller J, Bauer S, Maurer A, Langheinrich M, Roots I. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum).  Clin Pharmacol Ther. 1999;  66 338-345
  • 18 Jung D, Fried M, Kullak-Ublick G A. Human apical sodium-dependent bile salt transporter (SLC10A2) gene is regulated by the peroxisome proliferator-activated receptor α.  J Biol Chem. 2002;  277 30 559-30 566
  • 19 Jung D, Podvinec M, Meyer U A. et al . Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor.  Gastroenterology. 2002;  122 1954-1966
  • 20 Kast H R, Goodwin B, Tarr P T. et al . Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor.  J Biol Chem. 2002;  277 2908-2915
  • 21 Keppler D, König J. Hepatic canalicular membrane 5: Expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver.  FASEB J. 1997;  11 509-516
  • 22 Kliewer S A, Lehmann J M, Willson T M. Orphan nuclear receptors: shifting endocrinology into reverse.  Science. 1999;  284 757-760
  • 23 Kullak-Ublick G A, Hagenbuch B, Stieger B. et al . Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver.  Gastroenterology. 1995;  109 1274-1282
  • 24 Kullak-Ublick G A, Ismair M G, Stieger B. et al . Organic anion transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver.  G astroenterology. 2001;  120 525-533
  • 25 Lehmann J M, McKee D D, Watson M A, Willson T M, Moore J T, Kliewer S A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions.  J Clin Invest. 1998;  102 1016-1023
  • 26 Liddle C, Goodwin B. Regulation of hepatic drug metabolism: role of the nuclear receptors PXR and CAR.  Semin Liver Dis. 2002;  22 115-122
  • 27 Makishima M, Okamoto A Y, Repa J J. et al . Identification of a nuclear receptor for bile acids.  Science. 1999;  284 1362-1365
  • 28 Miranda S, Vollrath V, Wielandt A M, Loyola G, Bronfman M, Chianale J. Overexpression of mdr2 gene by peroxisome proliferators in the mouse liver.  J Hepatol. 1997;  26 1331-1339
  • 29 Moore L B, Goodwin B, Jones S A. et al . St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor.  Proc Natl Acad Sci USA. 2000;  97 7500-7502
  • 30 Moore L B, Parks D J, Jones S A. et al . Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands.  J Biol Chem. 2000;  275 15 122-15 127
  • 31 Noé B, Hagenbuch B, Stieger B, Meier P J. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain.  Proc Natl Acad Sci USA. 1997;  94 10 346-10 350
  • 32 Parks D J, Blanchard S G, Bledsoe R K. et al . Bile acids: natural ligands for an orphan nuclear receptor.  Science. 1999;  284 1365-1368
  • 33 Paulusma C C, Kool M, Bosma P J. et al . A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome.  Hepatology. 1997;  25 1539-1542
  • 34 Paulusma C C, Oude Elferink R P. The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia in rat and man.  J Mol Med. 1997;  75 420-428
  • 35 Piscitelli S C, Burstein A H, Chaitt D, Alfaro R M, Falloon J. Indinavir concentrations and St John’s wort.  Lancet. 2000;  355 547-548
  • 36 Repa J J, Berge K E, Pomajzl C, Richardson J A, Hobbs H, Mangelsdorf D J. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β.  J Biol Chem. 2002;  277 18 793-18 800
  • 37 Repa J J, Turley S D, Lobaccaro J A. et al . Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers.  Science. 2000;  289 1524-1529
  • 38 Ruschitzka F, Meier P J, Turina M, Luscher T F, Noll G. Acute heart transplant rejection due to Saint John’s wort.  Lancet. 2000;  355 548-549
  • 39 Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506.  J Biol Chem. 1993;  268 6077-6080
  • 40 Schuetz E G, Beck W T, Schuetz J D. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells.  Mol Pharmacol. 1996;  49 311-318
  • 41 Schuetz E G, Strom S, Yasuda K. et al . Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450.  J Biol Chem. 2001;  276 39 411-39 418
  • 42 Staudinger J L, Goodwin B, Jones S A. et al . The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity.  Proc Natl Acad Sci USA. 2001;  98 3369-3374
  • 43 Synold T W, Dussault I, Forman B M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux.  Nat Med. 2001;  7 584-590
  • 44 Taniguchi K, Wada M, Kohno K. et al . A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation.  Cancer Res. 1996;  56 4124-4129
  • 45 Urizar N L, Liverman A B, Dodds D T. et al . A natural product that lowers cholesterol as an antagonist ligand for FXR.  Science. 2002;  296 1703-1706
  • 46 Walters H C, Craddock A L, Fusegawa H, Willingham M C, Dawson P A. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3.  Am J Physiol. 2000;  279 G1188-G1200
  • 47 Wang H, Chen J, Hollister K, Sowers L C, Forman B M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.  Mol Cell. 1999;  3 543-553
  • 48 Waxman D J. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR.  Arch Biochem Biophys. 1999;  369 11-23

1 Unterstützung: Schweizerischer Nationalfonds (632-062773)

Prof. Dr. med. Gerd A. Kullak-Ublick

Departement für Innere Medizin, Universitätsspital

CH-8091 Zürich

Phone: +41/1/2554097

Fax: +41/1/2554598

Email: gerd.kullak@dim.usz.ch

    >