Exp Clin Endocrinol Diabetes 2011; 119(1): 47-52
DOI: 10.1055/s-0030-1268467
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Association of Restrictive Ventilatory Dysfunction with Insulin Resistance and Type 2 Diabetes in Koreans

H.-K. Kim1 , C.-H. Kim2 , Y. J. Jung1 , S. J. Bae1 , J. Choe1 , J. Y. Park3 , K.-U. Lee3
  • 1Health Promotion Center, Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
  • 2Division of Endocrinology & Metabolism, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
  • 3Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
Further Information

Publication History

received 16.04.2010 first decision 29.09.2010

accepted 03.11.2010

Publication Date:
18 January 2011 (online)

Abstract

Aims: To investigate associations of obstructive and restrictive patterns of ventilatory dysfunction with insulin resistance and type 2 diabetes mellitus (DM) in Koreans.

Methods: We cross-sectionally examined clinical, laboratory, and pulmonary function data on 35 456 Korean adults (age 18–93 years, 40% women) recorded during regular health check-ups. Insulin resistance (IR) was determined from fasting serum insulin concentration and homeostasis model assessment (HOMA).

Results: Individuals with type 2 DM and those with pre-diabetes (impaired fasting glucose levels) showed a higher prevalence of both restrictive (18% and 11%, respectively, vs. 8%; P<0.01) and obstructive (4.3% and 3.2%, respectively, vs. 2.3%; P<0.01) ventilatory dysfunction than did individuals with normal fasting glucose levels. Compared to subjects with normal ventilatory function, those with restrictive or obstructive ventilatory dysfunction were older, had higher systolic and diastolic blood pressure, and had elevated glucose and HbA1c levels. However, serum triglyceride, fasting insulin, and HOMA-IR were higher only in subjects with restrictive ventilatory dysfunction, and not in those with obstructive ventilatory dysfunction. On logistic regression analysis, the age and gender-adjusted odds ratio (OR) of restrictive ventilatory dysfunction for type 2 DM was 1.59 (95% confidence interval, 1.43–1.78). The increased OR remained significant after controlling for exercise, drinking, and smoking habits, presence of hypertension, body mass index, and waist circumference (OR=1.38 [1.23–1.55]). However, further adjustment for HOMA-IR attenuated the OR (1.11 [0.97–1.26]), making the OR statistically insignificant. In contrast, obstructive ventilatory dysfunction was not independently related to type 2 DM status.

Conclusion: Restrictive ventilatory dysfunction is independently associated with type 2 DM, probably via insulin resistance.

References

  • 1 Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive pulmonary impairment?.  Chest. 1999;  115 869-873
  • 2 American Thoracic Society. . Standardization of Spirometry, 1994 Update.  Am J Respir Crit Care Med. 1995;  152 1107-1136
  • 3 Bjorntorp P. The regulation of adipose tissue distribution in humans.  Int J Obes Relat Metab Disord. 1996;  20 291-302
  • 4 Bonora E, Kiechl S, Willeit J. et al . Prevalence of insulin resistance in metabolic disorders: the Bruneck Study.  Diabetes. 1998;  47 1643-1649
  • 5 Canoy D, Luben R, Welch A. et al . Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk Study, United Kingdom.  Am J Epidemiol. 2004;  159 1140-1149
  • 6 Choi JK, Paek DM, Lee JO. Normal predictive values of spirometry in Korean population.  Tuberc Respir Dis. 2005;  58 230-242
  • 7 Davis WA, Knuiman M, Kendall P. et al . Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: the Fremantle Diabetes Study.  Diabetes Care. 2004;  27 752-757
  • 8 Engstrom G, Hedblad B, Nilsson P. et al . Lung function, insulin resistance and incidence of cardiovascular disease: a longitudinal cohort study.  J Intern Med. 2003;  253 574-581
  • 9 Engstrom G, Janzon L. Risk of developing diabetes is inversely related to lung function: a population-based cohort study.  Diabet Med. 2002;  19 167-170
  • 10 Engstrom G, Lind P, Hedblad B. et al . Lung function and cardiovascular risk: relationship with inflammation-sensitive plasma proteins.  Circulation. 2002;  106 2555-2560
  • 11 Evans SE, Scanlon PD. Current practice in pulmonary function testing.  Mayo Clin Proc. 2003;  78 758-763
  • 12 Fabbri LM, Luppi F, Beghe B. et al . Complex chronic comorbidities of COPD.  Eur Respir J. 2008;  31 204-212
  • 13 Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome?.  Lancet. 2007;  370 797-799
  • 14 Fimognari FL, Pasqualetti P, Moro L. et al . The association between metabolic syndrome and restrictive ventilatory dysfunction in older persons.  J Gerontol Med Sci. 2007;  62 760-765
  • 15 Ford ES. Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults.  Am J Epidemiol. 2002;  155 57-64
  • 16 Ford ES, Mannino DM. Prospective association between lung function and the incidence of diabetes: findings from the National Health and Nutrition Examination Survey Epidemiologic Follow-up Study.  Diabetes Care. 2004;  27 2966-2970
  • 17 Gunnell D, Whitley E, Upton MN. et al . Associations of height, leg length, and lung function with cardiovascular risk factors in the Midspan Family Study.  J Epidemiol Community Health. 2003;  57 141-146
  • 18 Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study.  Diabetes Care. 1997;  20 1087-1092
  • 19 Hales CN, Barker DJ. The thrifty phenotype hypothesis.  Br Med Bull. 2001;  60 5-20
  • 20 Kouritas VK, Hatzoglou C, Ioannou M. et al . Insulin alters the permeability of sheep pleura.  Exp Clin Endocrinol Diabetes. 2010;  118 304-309
  • 21 Lange P, Parner J, Schnohr P. et al . Copenhagen City Heart Study: longitudinal analysis of ventilatory capacity in diabetic and nondiabetic adults.  Eur Respir J. 2002;  20 1406-1412
  • 22 Lawlor DA, Ebrahim S, Smith GD. Associations of measures of lung function with insulin resistance and Type 2 diabetes: findings from the British Women's Heart and Health Study.  Diabetologia. 2004;  47 195-203
  • 23 Lazarus R, Sparrow D, Weiss ST. Effects of obesity and fat distribution on ventilatory function: the Normative Aging Study.  Chest. 1997;  111 891-898
  • 24 Lazarus R, Sparrow D, Weiss ST. Baseline ventilatory function predicts the development of higher levels of fasting insulin and fasting insulin resistance index: the Normative Aging Study.  Eur Respir J. 1998;  12 641-645
  • 25 Leone N, Courbon D, Thomas F. et al . Lung function impairment and metabolic syndrome: the critical role of abdominal obesity.  Am J Respir Crit Care Med. 2009;  179 509-516
  • 26 Li AM, Chan D, Wong E. et al . The effects of obesity on pulmonary function.  Arch Dis Child. 2003;  88 361-363
  • 27 Lin WY, Yao CA, Wang HC. et al . Impaired lung function is associated with obesity and metabolic syndrome in adults.  Obesity (Silver Spring). 2006;  14 1654-1661
  • 28 Litonjua AA, Lazarus R, Sparrow D. et al . Lung function in type 2 diabetes: the Normative Aging Study.  Respir Med. 2005;  99 1583-1590
  • 29 Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and markers of inflammation: data from the Third National Health and Nutrition Examination.  Am J Med. 2003;  114 758-762
  • 30 Mannino DM, Thorn D, Swensen A. et al . Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD.  Eur Respir J. 2008;  32 962-969
  • 31 Marvisi M, Bartolini L, del Borrello P. et al . Pulmonary function in non-insulin-dependent diabetes mellitus.  Respiration. 2001;  68 268-272
  • 32 Matthews DR, Hosker JP, Rudenski AS. et al . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 33 Mendall MA, Strachan DP, Butland BK. et al . C-reactive protein: relation to total mortality, cardiovascular mortality and cardiovascular risk factors in men.  Eur Heart J. 2000;  21 1584-1590
  • 34 Nakajima K, Kubouchi Y, Muneyuki T. et al . A possible association between suspected restrictive pattern as assessed by ordinary pulmonary function test and the metabolic syndrome.  Chest. 2008;  134 712-718
  • 35 Pradhan AD, Manson JE, Rifai N. et al . C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.  JAMA. 2001;  286 327-334
  • 36 Sandler M. Is the lung a ‘target organ’ in diabetes mellitus?.  Arch Intern Med. 1990;  150 1385-1388
  • 37 Schmidt MI, Duncan BB, Sharrett AR. et al . Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study.  Lancet. 1999;  353 1649-1652
  • 38 Walter RE, Beiser A, Givelber RJ. et al . Association between glycemic state and lung function: the Framingham Heart Study.  Am J Respir Crit Care Med. 2003;  167 911-916
  • 39 Yeh HC, Punjabi NM, Wang NY. et al . Cross-sectional and prospective study of lung function in adults with type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) study.  Diabetes Care. 2008;  31 741-746

Correspondence

H.-K. KimMD, PhD 

Health Promotion Center

Asan Medical Center

388-1 Poongnap-dong

Songpa-ku

138-736 Seoul

South Korea

Phone: +82/2/3010 4802

Fax: +82/2/3010 4964

Email: hkkim0801@amc.seoul.kr

    >