Exp Clin Endocrinol Diabetes 2011; 119(2): 101-110
DOI: 10.1055/s-0030-1255105
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Induction of Pancreatic Phenotypes in Central Nervous System Derived Pluripotential Progenitor Cells

F. Saljooque1 , A. Ho1 , B. Wu1 , A. Zahra1 , H. S. U1
  • 1Division of Neurological Surgery, Veterans Administration San Diego Health Care System and The University of California – San Diego, San Diego, California, USA
Further Information

Publication History

received 30.03.2010 first decision 27.05.2010

accepted 02.06.2010

Publication Date:
08 September 2010 (online)

Abstract

Fetal rat brain stem cells (RSCs) have been induced to express pituitary properties when exposed to pituitary cells ([U et al., 2002]). In this study, we explored whether these RSCs could also be influenced to acquire properties characteristic of the pancreas. To this end, RSCs in culture were exposed to media conditioned by rat islet tumor cells and media containing Exendin-4 and nicotinamide since both have been shown to induce pancreatic phenotypes in embryonic stem cells. Lastly, an expression construct for pdx-1 was introduced into RSCs. The expression of pancreatic markers was analyzed using RT-PRC and immunocytochemistry. When RSCs were exposed to rat islet tumor cell conditioned media and media containing Exendin-4 and nicotinamide, the expression of pdx-1, insulin and somatostatin were observed. They also acquired a spherical shape typical of pancreatic cells in culture. Under these varied conditions, transcriptional factors essential to pancreatic development such as pdx-1 and Isl-1 were induced. The critical role of pdx-1 in stimulating certain endocrine pancreatic properties in RSCs was further confirmed upon the introduction of an expression construct for pdx-1 which markedly induced insulin and somatostatin. Taken together, these findings suggests that fetal brain stem cells are pluripotent and can be reprogrammed to acquire pancreatic properties through pathways which involved the transcription factor Pdx1.

References

  • 1 Bosco D, Meda P, Halban PA. et al . Importance of cell-matrix interaction in rat islet b-cell secretion in vitro: role of a6b1 integrin.  Diabetes. 2000;  49 233-243
  • 2 Cai J, Wu Y, Mirua T. et al . Properties of a fetal multipotent neural stem cell (NEP cell).  Dev Biol. 2002;  15; 251 (2) 221-240
  • 3 Cerf ME, Muller CJF, Du Toit DF. et al . Transcription factors, pancreatic development, and b-cell maintenance.  Biochem Biophy Res Comm. 2005;  326 699-702
  • 4 Devaskar SU, Giddings SJ, Rajakumar PA. et al . Insulin gene expression and insulin synthesis in mammalian neuronal cells.  J Biol Chem. 1994;  269 8445-8454
  • 5 Edlund H. Developmental biology of the pancreas.  Diabetes. 2001;  50 (Suppl. 1) S5-S9
  • 6 Ferber S, Halkin A, Cohen H. et al . Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia.  Nat Med. 2000;  6 568-572
  • 7 Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS.  Annu Rev Neurosci. 1995;  18 159-192
  • 8 Gittes GK, Galante PE, Hanahan D. et al . Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors.  Development. 1996;  122 439-447
  • 9 Habener JF, Kemp DM, Thomas MK. Minireview: transcriptional regulation in pancreatic development.  Endo. 2005;  146 (3) 1025-1034
  • 10 Havrankova J, Schmechel D, Roth J. et al . Identification of insulin I rat brain.  Proc Natl Acad Sci. 1978;  75 5737-5741
  • 11 Holland AM, Hale MA, Kagami H. et al . Experimental control of pancreatic development and maintenance.  Proc Natl Acad Sci. 2002;  99 12236-12241
  • 12 Horb ME, Shen C-N, Tosh D. et al . Experimental conversion of liver to pancreas.  Curr Biol. 2003;  13 105-115
  • 13 Hunziker E, Stein M. Nestin-expressing cells in the pancreatic islets of Langerhans.  Biochem Biophy Res Comm. 2000;  271 116-119
  • 14 Israsena N, Hu M, Fu W. et al . The presence of FGF2 signaling determines whether ß-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells.  Developmental Biology. 2004;  268 220-231
  • 15 Ivanova NB, Dimos JT, Schaniel C. et al . A stem cell molecular signature.  Science. 2002;  298 (5593) 601-604
  • 16 Johe KK, Hazel TG, Muller T. et al . Single factors direct the differentiation of stem cells from the fetal and adult central nervous system.  Genes and development. 1996;  10 3129-3140
  • 17 Kim SK, Hebrok M. Intercellular signals regulating pancreas development and function.  Genes and Development. 2001;  15 111-127
  • 18 Kim SK, MacDonald RJ. Signaling and transcriptional control of pancreatic organogenesis.  Curr Opinion in Genetics and Development. 2002;  12 540-547
  • 19 Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development.  Development. 1997;  124 4243-4252
  • 20 Kim HT, Kim IS, Lee IS. et al . Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed.  Exp Neurol. 2006;  199 (1) 222-235 . Epub 2006 May 22.
  • 21 Kojima H, Fujimiya M, Matsumura K. et al . NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice.  Nat Med. 2003;  9 596-603
  • 22 Lee JE. Basic helix-loop-helix genes in neural development.  Curr Opin Neurobiol. 1997;  7 13-20
  • 23 Lumelsky N, Blondel O, Laeng P. et al . Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.  Science. 2001;  292 1389-1394
  • 24 McKay R. Stem cells in the central nervous system.  Science. 1997;  276 66-71
  • 25 Melloul D. Trancription factors in islet development and physiology – role of PDX-1 in beta-cell function.  Ann N Y Acad Sci. 2004;  1014 28-37
  • 26 Miralles F, Czernichow P, Ozaki K. et al . Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas.  Proc Natl Acad Sci. 1999;  96 6267-6272
  • 27 Murtaugh LC, Melton DA. Genes, signals and lineages in pancreas development.  Ann Rev Cell Dev Biol. 2003;  19 71-89
  • 28 Oishi K, Ogawa Y, Gamoh S. et al . Contractile responses of smooth muscle cells differentiated from rat neural stem cells.  J Physiol. 2002;  1;540 (Pt 1) 139-152
  • 29 Peck AB, Cornelius JG, Chaudhari M. et al . Use of in vitro-generated, stem cell-derived islets to cure type 1 diabetes.  Ann N Y Acad Sci. 2002;  958 59-69
  • 30 Ramalho-Santos M, Yoon S, Matsuzaki Y. et al . ‘Stemness’: transcriptional profiling of embryonic and adult stem cells.  Science. 2002;  298 (5593) 597-600
  • 31 Ramiya VK, Maraist M, Arfors KE. et al . Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells.  Nat Med. 2000;  6 278-282
  • 32 Ravin R, Hoeppner DJ, Munno DM. et al . Potency and fate specification in CNS stem cell populations in vitro.  Cell Stem Cell. 2008;  4;3 (6) 670-680
  • 33 Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.  Science. 1992;  255 1707-1710
  • 34 Scharf E, May V, Braas KM. et al . Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) regulate murine neural progenitor cell survival, proliferation, and differentiation.  J Mol Neurosci. 2008;  36 (1–3) 79-88 Epub 2008 Jul 15
  • 35 Schwitzgebel VM. Programming of the pancreas.  Mol Cell Endo. 2001;  185 99-108
  • 36 Schwitzgebel VM, Scheel DW, Conners JR. et al . Expression of neurogenin3 reveals an islet cell precursor population in the pancreas.  Development. 2000;  127 3533-3542
  • 37 Schechter R, Abboud M. Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures.  Dev Brain Res. 2001;  127 41-49
  • 38 Schechter R, Whitmire J, Wheet GS. et al . Immunohistochemical and in situ hybridization study of an insulin-like substance in fetal neuron cell cultures.  Brain Res. 1994;  636 9-27
  • 39 Shen C-N, Slack JMW, Tosh D. Molecular basis of transdifferentiation of pancreas to liver.  Nat Cell Biol. 2000;  2 879-888
  • 40 Temple S. Division and differentiation of isolated CNS blast cells in microculture.  Nature. 1989;  340 471-473
  • 41 U HS, Alilain W, Saljooque F. Fetal Brain Progenitor Cells are instructed to transdifferentiate to Fates outside the Nervous System.  Mol Endocrinol. 2002;  16 2645-2656
  • 42 U HS, Wu B, Wilkes N. et al . Brain stem cells adopt a pituitary fate after implantation into the adult rodent pituitary gland.  Neuroendocrinology. 2007;  86 (1) 58-68
  • 43 Vescovi AL, Reynolds BA, Fraser DD. et al . bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells.  Neuron. 1993;  11 951-966
  • 44 Vescovi AL, Snyder EY. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo.  Brain Pathol. 1999;  9 (3) 569-598
  • 45 Yashpal NK, Li J, Wang R. Characterization of c-kit and Nestin expression during islet cell development in the prenatal and postnatal rat pancreas.  Dev Dynamics. 2004;  229 813-825
  • 46 Zhang Y-Q, Sarvetnick N. Development of cell markers for the identification and expansion of islet progenitor cells.  Diabetes/Metbolism Res and Review. 2003;  19 363-374
  • 47 Zulwelski H, Abraham EJ, Gerlach MJ. et al . Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes.  Diabetes. 2001;  50 521-533

Correspondence

H. S. U MD 

Division of Neurosurgery

The Veteran's Administration

Healthcare System

3350 La Jolla Village

Dr. La Jolla

CA 92037

USA

Phone: +1/858/552 8585 ext. 3093

Fax: +1/858/552 4376

Email: hoisang@ucsd.edu

    >