Synlett
DOI: 10.1055/a-2211-6538
synpacts
Special Section 13th EuCheMS Organic Division Young Investigator Workshop

Defluorinative Asymmetric Allylic Alkylations

,
Jordi Duran
,
,
This work was supported by the projects PID2020-116859GA-I00 and CNS2022-135457, funded by MCIN/AEI/10.13039/501100011033. P.R. thanks the Ministry of Education (MEFP) for a collaboration fellowship, J.D. thanks the Generalitat de Catalunya for the AGAUR-FI Joan Oró predoctoral fellowship BDNS-657443, and M.G. thanks the Ministry of Science (MICIN) for an FPI predoctoral fellowship PRE2021-097347.


Abstract

The introduction of allyl fluorides as alternative electrophiles in asymmetric allylic alkylation reactions has recently attracted significant interest. Despite the intrinsic thermodynamically demanding C–F bond-cleavage event, the fluorophilic nature of the silicon atom is key in assisting the activation and cleavage of the allylic C–F bond. Thus, the use of silylated compounds as unconventional nucleophiles, together with the Lewis basicity of fluorine when acting as a leaving group, enables the development of innovative chemical transformations within mild and selective catalytic schemes. This Synpacts article summarizes the diverse defluorinative asymmetric allylic alkylations with allyl fluorides reported to date under both chiral Lewis base and transition-metal catalysis.



Publication History

Received: 03 November 2023

Accepted after revision: 15 November 2023

Accepted Manuscript online:
15 November 2023

Article published online:
02 January 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 1b Graening T, Schmalz H.-G. Angew. Chem. Int. Ed. 2003; 42: 2580
    • 1c Trost BM. J. Org. Chem. 2004; 69: 5813
    • 1d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 1e Trost BM, Zhang T, Sieber JD. Chem. Sci. 2010; 1: 427

      For selected reviews on transition-metal-catalyzed AAA, see:
    • 2a Trost BM. Tetrahedron 2015; 71: 5708
    • 2b Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
    • 2c Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
    • 2d Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
    • 2e Han J.-F, Guo P, Zhang X.-G, Liao J.-B, Ye K.-Y. Org. Biomol. Chem. 2020; 18: 7740

      For selected reviews on Lewis base catalyzed AAA, see:
    • 3a Rios R. Catal. Sci. Technol. 2012; 2: 267
    • 3b Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
    • 3c Chen Z, Chen Z, Du W, Chen Y. Chem. Rec. 2020; 20: 541
    • 3d Calcatelli A, Cherubini-Celli A, Carletti E, Companyó X. Synthesis 2020; 52: 2922

      For selected examples using stabilized nucleophiles, see:
    • 4a Furukawa T, Kawazoe J, Zhang W, Nishimine T, Tokunaga E, Matsumoto T, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2011; 50: 9684
    • 4b Companyó X, Valero G, Ceban V, Calvet T, Font-Bardía M, Moyano A, Rios R. Org. Biomol. Chem. 2011; 9: 7986
    • 4c Wang B, Companyó X, Li J, Moyano A, Rios R. Tetrahedron Lett. 2012; 53: 4124
    • 4d Companyó X, Mazzanti A, Moyano A, Janecka A, Rios R. Chem. Commun. 2013; 49: 1184
    • 4e Companyó X, Geant P.-Y, Mazzanti A, Moyano A, Rios R. Tetrahedron 2014; 70: 75
    • 4f Ceban V, Tauchman J, Meazza M, Gallagher G, Light ME, Gergelitsová I, Vesely J, Rios R. Sci. Rep. 2015; 5: 16886
    • 4g Sun M, Chen J.-F, Chen S, Li C. Org. Lett. 2019; 21: 1278
    • 4h Ghorai S, Chirke SS, Xu W.-B, Chen J.-F, Li C. J. Am. Chem. Soc. 2019; 141: 11430
    • 4i Song T, Arseniyadis S, Cossy J. Org. Lett. 2019; 21: 603
    • 4j Ghorai S, Rehman S, Xu W.-B, Huang W.-Y, Li C. Org. Lett. 2020; 22: 3519
    • 4k Meazza M, Cruz CM, Ortuño AM, Cuerva JM, Crovetto L, Rios R. Chem. Sci. 2021; 12: 4503
    • 4l Richard F, Aubert S, Katsina T, Reinalda L, Palomas D, Crespo-Otero R, Huang J, Leitch DC, Mateos C, Arseniyadis S. Nat. Synth. 2022; 1: 641

      For selected examples with unconventional nucleophiles, see:
    • 5a You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
    • 5b Wang X, Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2017; 56: 1116
    • 5c Zhang H.-H, Zhao J.-J, Yu S. J. Am. Chem. Soc. 2018; 140: 16914
    • 5d Chen P, Li Y, Chen Z, Du W, Chen Y. Angew. Chem. Int. Ed. 2020; 59: 7083
    • 5e Paria S, Carletti E, Marcon M, Cherubini-Celli A, Mazzanti A, Rancan M, Dell’Amico L, Bonchio M, Companyó X. J. Org. Chem. 2020; 85: 4463
    • 5f Crisenza GE. M, Faraone A, Gandolfo E, Mazzarella D, Melchiorre P. Nat. Chem. 2021; 13: 575
    • 5g Yang P, Wang R, Cheng Y, Zheng C, You S. Angew. Chem. Int. Ed. 2022; 61: e202213520
    • 5h Ding W, Li M, Fan J, Cheng X. Nat. Commun. 2022; 13: 5642
    • 5i Bertuzzi G, Ombrosi G, Bandini M. Org. Lett. 2022; 24: 4354
    • 5j Brunetti A, Bertuzzi G, Bandini M. Synthesis 2023; 55: 3047

      For selected reviews of C–F bond activation, see:
    • 6a Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
    • 6b Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
    • 6c Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931

      For selected reviews on defluorinative transformations, see:
    • 8a Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 8b Wang Y, Liu A. Chem. Soc. Rev. 2020; 49: 4906
    • 8c Zhao B, Rogge T, Ackermann L, Shi Z. Chem. Soc. Rev. 2021; 50: 8903
    • 8d Röckl JL, Robertson EL, Lundberg H. Org. Biomol. Chem. 2022; 20: 6707
    • 8e Wang Z, Sun Y, Shen L.-Y, Yang W.-C, Meng F, Li P. Org. Chem. Front. 2022; 9: 853
  • 9 Nishimine T, Fukushi K, Shibata N, Taira H, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2014; 53: 517
  • 10 Nishimine T, Taira H, Tokunaga E, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2016; 55: 359
  • 11 Okusu S, Okazaki H, Tokunaga E, Soloshonok VA, Shibata N. Angew. Chem. Int. Ed. 2016; 55: 6744
  • 12 Nishimine T, Taira H, Mori S, Matsubara O, Tokunaga E, Akiyama H, Soloshonok VA, Shibata N. Chem. Commun. 2017; 53: 1128
  • 13 Zi Y, Lange M, Schultz C, Vilotijevic I. Angew. Chem. Int. Ed. 2019; 58: 10727
  • 14 Lange M, Zi Y, Vilotijevic I. J. Org. Chem. 2020; 85: 1259
  • 15 Zi Y, Lange M, Vilotijevic I. Chem. Commun. 2020; 56: 5689
  • 16 Sumii Y, Nagasaka T, Wang J, Uno H, Shibata N. J. Org. Chem. 2020; 85: 15699
  • 17 Duran J, Mateos J, Moyano A, Companyó X. Chem. Sci. 2023; 14: 7147. For a preliminary version of this work deposited inChemRxiv, see: Duran J., Mateos J., Moyano A., Companyó X.; ChemRxiv; 2023, preprint, DOI: 10.26434/chemrxiv-2023-wxmzv
  • 18 Kumar S, Lange M, Zi Y, Görls H, Vilotijevic I. Chem. Eur. J. 2023; 29: e202300641. For a preliminary version of this work deposited in ChemRxiv, see: Kumar S., Lange M., Zi Y., Görls H., Vilotijevic I.; ChemRxiv; 2023, preprint; DOI: 10.26434/chemrxiv-2023-55tgl
  • 19 Trost BM, Gholami H, Zell D. J. Am. Chem. Soc. 2019; 141: 11446
  • 20 Hazari A, Gouverneur V, Brown JM. Angew. Chem. Int. Ed. 2009; 48: 1296
  • 21 Trost BM, Jiao Z, Gholami H. Chem. Sci. 2021; 12: 10532
  • 22 Butcher TW, Yang JL, Amberg WM, Watkins NB, Wilkinson ND, Hartwig JF. Nature 2020; 583: 548