Synlett 2024; 35(09): 963-966
DOI: 10.1055/a-2179-6320
cluster
Chemical Synthesis and Catalysis in Germany

Electrocatalytic Synthesis of 1,2-Dioxolanes from Tetrasubstituted Donor–Acceptor Cyclopropanes

,
Simon Kolb
,


Abstract

An electrochemical method for the synthesis of 3,3,5,5-tetrasubstituted 1,2-dioxolanes from donor–acceptor cyclopropanes with quaternary donor positions is described. This catalyst-free strategy delivers radical cations after C(sp3)–C(sp3) cleavage by direct anodic oxidation of the strained carbocycle. A broad scope with regard to the cyclopropanes employed in the reaction is presented. Additionally, we propose a plausible mechanism for the reaction.

Supporting Information



Publication History

Received: 01 August 2023

Accepted after revision: 21 September 2023

Accepted Manuscript online:
21 September 2023

Article published online:
25 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 1b Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 1c Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 1d Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 1e Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 1f Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
    • 1g Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 1h Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
    • 2a Ivanova OA, Budynina EM, Grishin YK, Trushkov IV, Verteletskii PV. Angew. Chem. Int. Ed. 2008; 47: 1107
    • 2b Parsons AT, Smith AG, Neel AJ, Johnson JS. J. Am. Chem. Soc. 2010; 132: 9688
    • 2c Goldberg AF. G, O’Connor NR, Craig RA, Stoltz BM. Org. Lett. 2012; 14: 5314
    • 2d Zhu W, Fang J, Liu Y, Ren J, Wang Z. Angew. Chem. Int. Ed. 2013; 52: 2032
    • 2e Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964
    • 2f Garve LK. B, Petzold M, Jones PG, Werz DB. Org. Lett. 2016; 18: 564
    • 2g Xu P.-W, Liu J.-K, Shen L, Cao Z.-Y, Zhao X.-L, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 2h Wang Z.-H, Zhang H.-H, Wang D.-M, Xu P.-F, Luo Y.-C. Chem. Commun. 2017; 53: 8521
    • 2i Augustin AU, Sensse M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 14293
    • 2j Chagarovskiy AO, Vasin VS, Kuznetsov VV, Ivanova OA, Rybakov VB, Shumsky AN, Makhova NN, Trushkov IV. Angew. Chem. Int. Ed. 2018; 57: 10338
    • 2k Kreft A, Jones PG, Werz DB. Org. Lett. 2018; 20: 2059
    • 2l Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
    • 2m Petzold M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 6225
    • 2n Augustin AU, Merz JL, Jones PG, Mlostoń G, Werz DB. Org. Lett. 2019; 21: 9405
    • 2o Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 25825
    • 3a Lifchits O, Alberico D, Zakharian I, Charette AB. J. Org. Chem. 2008; 73: 6838
    • 3b Lifchits O, Charette AB. Org. Lett. 2008; 10: 2809
    • 3c Ivanov KL, Villemson EV, Budynina EM, Ivanova OA, Trushkov IV, Melnikov MY. Chem. Eur. J. 2015; 21: 4975
    • 3d Kaicharla T, Roy T, Thangaraj M, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 10061
    • 3e Lücht A, Patalag LJ, Augustin AU, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 10587
    • 3f Konik YA, Elek GZ, Kaabel S, Järving I, Lopp M, Kananovich DG. Org. Biomol. Chem. 2017; 15: 8334
    • 4a Das S, Daniliuc CG, Studer A. Org. Lett. 2016; 18: 5576
    • 4b Wallbaum J, Garve LK. B, Jones PG, Werz DB. Org. Lett. 2017; 19: 98
    • 4c Singh K, Bera T, Jaiswal V, Biswas S, Mondal B, Das D, Saha J. J. Org. Chem. 2019; 84: 710
    • 4d Augustin AU, Jones PG, Werz DB. Chem. Eur. J. 2019; 25: 11620
    • 4e Guin A, Rathod T, Gaykar RN, Roy T, Biju AT. Org. Lett. 2020; 22: 2276
    • 4f Deswal S, Guin A, Biju AT. Org. Lett. 2023; 25: 1643
    • 4g Oliver GA, Werz DB. Org. Lett. 2023; 25: 3568
    • 5a Schneider TF, Kaschel J, Awan SI, Dittrich B, Werz DB. Chem. Eur. J. 2010; 16: 11276
    • 5b Kaschel J, Schmidt CD, Mumby M, Kratzert D, Stalke D, Werz DB. Chem. Commun. 2013; 49: 4403
    • 5c Sabbatani J, Maulide N. Angew. Chem. Int. Ed. 2016; 55: 6780
    • 5d Shim SY, Choi Y, Ryu DH. J. Am. Chem. Soc. 2018; 140: 11184
    • 5e Ivanova OA, Chagarovskiy AO, Shumsky AN, Krasnobrov VD, Levina II, Trushkov IV. J. Org. Chem. 2018; 83: 543
    • 6a Sparr C, Gilmour R. Angew. Chem. Int. Ed. 2011; 50: 8391
    • 6b Halskov KS, Kniep F, Lauridsen VH, Iversen EH, Donslund BS, Jørgensen KA. J. Am. Chem. Soc. 2015; 137: 1685
    • 6c Sanchez-Diez E, Vesga DL, Reyes E, Uria U, Carrillo L, Vicario JL. Org. Lett. 2016; 18: 1270
    • 6d Wallbaum J, Garve LK. B, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 18756
    • 6e Levens A, Ametovski A, Lupton DW. Angew. Chem. Int. Ed. 2016; 55: 16136
    • 6f Blom J, Vidal-Albalat A, Jørgensen J, Barløse CL, Jessen KS, Iversen MV, Jørgensen KA. Angew. Chem. Int. Ed. 2017; 56: 11831
    • 6g Pirenne V, Robert EG. L, Waser J. Chem. Sci. 2021; 12: 8706
    • 6h McLeod DA, Thøgersen MK, Barløse CL, Skipper ML, Obregón EB, Jørgensen KA. Angew. Chem. Int. Ed. 2022; 61: e202206096
  • 7 Garve LK. B, Barkawitz P, Jones PG, Werz DB. Org. Lett. 2014; 16: 5804
  • 8 Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 15928
  • 9 Kolb S, Ahlburg NL, Werz DB. Org. Lett. 2021; 23: 5549
    • 10a Casteel DA. Nat. Prod. Rep. 1999; 16: 55
    • 10b Liu D.-Z, Liu J.-K. Nat. Prod. Bioprospect. 2013; 3: 161
    • 11a Bloodworth AJ, Chan KH, Cooksey CJ. J. Org. Chem. 1986; 51: 2110
    • 11b Dang H.-S, Davies AG. J. Organomet. Chem. 1992; 430: 287
    • 11c Pinet A, Nguyen TL, Bernadat G, Figadère B, Ferrié L. Org. Lett. 2019; 21: 4729
    • 12a Mizuno K, Kamiyama N, Ichinose N, Otsuji Y. Tetrahedron 1985; 41: 2207
    • 12b Akasaka T, Fukuoka K, Ando W. Tetrahedron Lett. 1991; 32: 7695
    • 13a Feldman KS, Parvez M. J. Am. Chem. Soc. 1986; 108: 1328
    • 13b Feldman KS, Simpson RE. J. Am. Chem. Soc. 1989; 111: 4878
    • 13c McCullough K, Nojima M. Curr. Org. Chem. 2001; 5: 601
    • 13d Terent’ev AO, Borisov DA, Vil’ VA, Dembitsky VM. Beilstein J. Org. Chem. 2014; 10: 34
    • 13e Pinet A, Nguyen LT, Figadère B, Ferrié L. Eur. J. Org. Chem. 2020; 7407
    • 13f Ferrié L. Adv. Heterocycl. Chem. 2021; 135: 57
  • 14 Kamata M, Furukawa H, Miyashi T. Tetrahedron Lett. 1990; 31: 681
  • 15 Mata S, González J, Vicente R, López LA. Eur. J. Org. Chem. 2016; 2681

    • For reviews on modern electroorganic chemistry, see:
    • 16a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 16b Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 16c Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 16d Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
  • 17 Electrocatalytic Synthesis of 1,2-Dioxolanes: General Procedure In a 5 mL ElectraSyn vial, the appropriate cyclopropane 1 (200 μmol, 1.00 equiv) and TBABF4 (0.02 M) were dissolved in HFIP (3.0 mL), and the solution was saturated with O2 for 5 min. The solution was then electrolyzed at a glassy carbon anode and a glassy carbon cathode at a constant current of 1 mA. The vial was refilled with HFIP (1.5 mL) 5 min after the electrolysis was started. After 1 F/mol had been delivered, the mixture was concentrated in vacuo and the residue was purified by column chromatography (silica gel, pentane–EtOAc). Dimethyl 5-Methyl-5-phenyl-1,2-dioxolane-3,3-dicarboxylate (2a) Prepared by the general procedure and purified by column chromatography [silica gel, pentane–EtOAc (20:1 to 10:1)] to give a colorless solid; yield: 333.2 mg (40%, 1.19 mmol); mp 101 °C. IR (ATR): 2958, 2926, 1748, 1495, 1441, 1375, 1270, 1201, 1164, 1096 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.44–7.41 (m, 2 H), 7.37–7.33 (m, 2 H), 7.29–7.26 (m, 1 H), 3.87 (s, 3 H), 3.64 (s, 3 H), 3.56 (d, J = 12.7 Hz, 1 H), 3.36 (d, J = 12.7 Hz, 1 H), 1.67 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 167.7, 167.1, 142.7, 128.6 (2 C), 127.8, 125.1 (2 C), 88.5, 88.0, 54.3, 53.8, 53.5, 26.2. HRMS (ESI): m/z [M + Na]+ calcd for C14H16NaO6: 303.0839; found: 303.0835.
  • 18 CCDC 2284385 contains the supplementary crystallographic data for compound 2a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures