Planta Med 2023; 89(10): 1010-1020
DOI: 10.1055/a-2076-2034
Natural Product Chemistry and Analytical Studies
Reviews

Molecular Farming Strategy for the Rapid Production of Protein-Based Reagents for Use in Infectious Disease Diagnostics

Balamurugan Shanmugaraj
1   Baiya Phytopharm Co., Ltd., Bangkok, Thailand
,
Perawat Jirarojwattana
2   Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
3   Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
,
Waranyoo Phoolcharoen
2   Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
3   Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
› Author Affiliations
This research was funded by Chulalongkorn University Thailand (WP), the 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).

Abstract

Recombinant proteins are a major breakthrough in biomedical research with a wide range of applications from diagnostics to therapeutics. Strategic construct design, consistent expression platforms, and suitable upstream and downstream techniques are key considerations to produce commercially viable recombinant proteins. The recombinant antigenic protein production for use either as a diagnostic reagent or subunit vaccine formulation is usually carried out in prokaryotic or eukaryotic expression platforms. Microbial and mammalian systems dominate the biopharmaceutical industry for such applications. However, there is no universal expression system that can meet all the requirements for different types of proteins. The adoptability of any expression system is likely based on the quality and quantity of the proteins that can be produced from it. The huge demand of recombinant proteins for different applications requires an inexpensive production platform for rapid development. The molecular farming scientific community has been promoting the plant system for nearly 3 decades as a cost-effective alternative to produce high-quality proteins for research, diagnostic, and therapeutic applications. Here, we discuss how plant biotechnology could offer solutions for the rapid and scalable production of protein antigens as low-cost diagnostic reagents for use in functional assays.



Publication History

Received: 09 December 2022

Accepted after revision: 18 April 2023

Accepted Manuscript online:
18 April 2023

Article published online:
15 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Markets and Markets. Protein Expression Market by Type (Escherichia coli, Mammalian, Yeast, Pichia, Insect, Baculovirus and Cell-free), Products (Reagents, Competent Cells, Instruments, Services), Application, End-User and Region – Global Forecast to 2025. Accessed February 13, 2023 at: https://www.marketsandmarkets.com/
  • 2 Belay ED, Kile JC, Hall AJ, Barton-Behravesh C, Parsons MB, Salyer S, Walke H. Zoonotic disease programs for enhancing global health security. Emerg Infect Dis 2017; 23: S65-S70
  • 3 Andryukov BG. Six decades of lateral flow immunoassay: From determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 2020; 6: 280-304
  • 4 Heidt B, Siqueira WF, Eersels K, Diliën H, van Grinsven B, Fujiwara RT, Cleij TJ. Point of care diagnostics in resource-limited settings: A review of the present and future of PoC in its most needed environment. Biosensors (Basel) 2020; 10: 133
  • 5 Huleani S, Roberts MR, Beales L, Papaioannou EH. Escherichia coli as an antibody expression host for the production of diagnostic proteins: significance and expression. Crit Rev Biotechnol 2022; 42: 756-773
  • 6 Mark JKK, Lim CSY, Nordin F, Tye GJ. Expression of mammalian proteins for diagnostics and therapeutics: A review. Mol Biol Rep 2022; 49: 10593-10608
  • 7 Bandaranayake AD, Almo SC. Recent advances in mammalian protein production. FEBS Lett 2014; 588: 253-260
  • 8 Huang CJ, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 2012; 39: 383-399
  • 9 Tripathi NK, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol 2019; 7: 420
  • 10 Palomares LA, Estrada-Moncada S, Ramírez OT. Production of Recombinant Proteins. In: Balbás P, Lorence A. eds. Recombinant Gene Expression: Reviews and Protocols. Totowa, NJ: Humana Press; 2004: 15-51
  • 11 He J, Lai H, Brock C, Chen Q. A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol 2012; 2012: 106783
  • 12 Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 2003; 4: 794-805
  • 13 Yusibov V, Streatfield SJ, Kushnir N. Clinical development of plant-produced recombinant pharmaceuticals: Vaccines, antibodies and beyond. Hum Vaccin 2011; 7: 313-321
  • 14 Schillberg S, Spiegel H. Recombinant Protein Production in Plants: A Brief Overview of Strengths and Challenges. In: Schillberg S, Spiegel H. eds. Recombinant Proteins in Plants: Methods and Protocols. New York, NY: Springer US; 2022: 1-13
  • 15 Hundleby PAC, DʼAoust MA, Finkle C, Atkins J, Twyman RM. Regulation of molecular farming products. Methods Mol Biol 2022; 2480: 313-333
  • 16 Schillberg S, Finnern R. Plant molecular farming for the production of valuable proteins – Critical evaluation of achievements and future challenges. J Plant Physiol 2021; 258 – 259: 153359
  • 17 Ward BJ, Gobeil P, Séguin A, Atkins J, Boulay I, Charbonneau PY, Couture M, DʼAoust MA, Dhaliwall J, Finkle C, Hager K, Mahmood A, Makarkov A, Cheng MP, Pillet S, Schimke P, St-Martin S, Trépanier S, Landry N. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat Med 2021; 27: 1071-1078
  • 18 Pillet S, Couillard J, Trépanier S, Poulin JF, Yassine-Diab B, Guy B, Ward BJ, Landry N. Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate–Two randomized Phase II clinical trials in 18 to 49 and ≥ 50 years old adults. PLoS One 2019; 14: e0216533
  • 19 Hager KJ, Pérez Marc G, Gobeil P, Diaz RS, Heizer G, Llapur C, Makarkov AI, Vasconcellos E, Pillet S, Riera F, Saxena P, Geller Wolff P, Bhutada K, Wallace G, Aazami H, Jones CE, Polack FP, Ferrara L, Atkins J, Boulay I, Dhaliwall J, Charland N, Couture MMJ, Jiang-Wright J, Landry N, Lapointe S, Lorin A, Mahmood A, Moulton LH, Pahmer E, Parent J, Séguin A, Tran L, Breuer T, Ceregido MA, Koutsoukos M, Roman F, Namba J, DʼAoust MA, Trepanier S, Kimura Y, Ward BJ. CoVLP Study Team. Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. N Engl J Med 2022; 386: 2084-2096
  • 20 Shanmugaraj B, Phoolcharoen W. Addressing demand for recombinant biopharmaceuticals in the COVID-19 era. Asian Pac J Trop Med 2021; 14: 49-51
  • 21 da Cunha NB, Vianna GR, da Almeida Lima T, Rech E. Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins. Biotechnol J 2014; 9: 39-50
  • 22 Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules 2021; 26: 4032
  • 23 Rybicki EP. Plant-based vaccines against viruses. Virol J 2014; 11: 205
  • 24 Sheshukova EV, Komarova TV, Dorokhov YL. Plant factories for the production of monoclonal antibodies. Biochemistry (Mosc) 2016; 81: 1118-1135
  • 25 Iyappan G, Shanmugaraj BM, Inchakalody V, Ma JKC, Ramalingam S. Potential of plant biologics to tackle the epidemic like situations – case studies involving viral and bacterial candidates. Int J Infect Dis 2018; 73: 363
  • 26 Shanmugaraj B, Malla A, Bulaon CJI, Phoolcharoen W, Phoolcharoen N. Harnessing the potential of plant expression system towards the production of vaccines for the prevention of human papillomavirus and cervical cancer. Vaccines (Basel) 2022; 10: 2064
  • 27 Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant platforms for efficient heterologous protein production. Biotechnol Bioprocess Eng 2021; 26: 546-567
  • 28 Gerszberg A, Hnatuszko-Konka K. Compendium on food crop plants as a platform for pharmaceutical protein production. Int J Mol Sci 2022; 23: 3236
  • 29 Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario-Najera V, Blanco Perera A, Cerda Bennasser P, Saba-Mayoral A, Sobrino-Mengual G, Vargheese A, Abranches R, Abreu IA, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Ramalingam SK, Lacorte C, Lomonossoff GP, Luís IM, Ma JK, McDonald KA, Murad A, Nandi S, OʼKeefe B, Oksman-Caldentey KM, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Capell T, Christou P. Contributions of the international plant science community to the fight against human infectious diseases – part 1: Epidemic and pandemic diseases. Plant Biotechnol J 2021; 19: 1901-1920
  • 30 He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario-Najera V, Blanco Perera A, Cerda Bennaser P, Saba-Mayoral A, Sobrino-Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K-C Ma J, McDonald KA, Murad A, Nandi S, OʼKeef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman-Caldentey KM, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. Plant Biotechnol J 2021; 19: 1921-1936
  • 31 Stoger E, Fischer R, Moloney M, Ma JK. Plant molecular pharming for the treatment of chronic and infectious diseases. Annu Rev Plant Biol 2014; 65: 743-768
  • 32 Tschofen M, Knopp D, Hood E, Stöger E. Plant molecular farming: Much more than medicines. Annu Rev Anal Chem (Palo Alto Calif) 2016; 9: 271-294
  • 33 Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 2001; 6: 219-226
  • 34 Obembe OO, Popoola JO, Leelavathi S, Reddy SV. Advances in plant molecular farming. Biotechnol Adv 2011; 29: 210-222
  • 35 Ma JK, Christou P, Chikwamba R, Haydon H, Paul M, Ferrer MP, Ramalingam S, Rech E, Rybicki E, Wigdorovitz A, Yang DC, Thangaraj H. Realising the value of plant molecular pharming to benefit the poor in developing countries and emerging economies. Plant Biotechnol J 2013; 11: 1029-1033
  • 36 El Jaddaoui I, Al Idrissi N, Hamdi S, Wakrim L, Nejjari C, Amzazi S, Elouahabi A, Bakri Y, Ghazal H. Plant-based vaccines against COVID-19 for massive vaccination in Africa. Front Drug Deliv 2022; 2: 909958
  • 37 Shohag MJI, Khan FZ, Tang L, Wei Y, He Z, Yang X. COVID-19 crisis: How can plant biotechnology help?. Plants (Basel) 2021; 10: 352
  • 38 Shanmugaraj B, Bulaon I CJ, Phoolcharoen W. Plant molecular farming: A viable platform for recombinant biopharmaceutical production. Plants (Basel) 2020; 9: 842
  • 39 Tusé D, Nandi S, McDonald KA, Buyel JF. The emergency response capacity of plant-based biopharmaceutical manufacturing-what it is and what it could be. Front Plant Sci 2020; 11: 594019
  • 40 Fischer R, Buyel JF. Molecular farming – The slope of enlightenment. Biotechnol Adv 2020; 40: 107519
  • 41 Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT, Sameeullah M, Darkhshan. Hussain S, Saud S, Hassan S, Jan A, Jan MT, Wu C, Chun MX, Huang J. Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 2015; 37: 265-279
  • 42 Spiegel H, Stöger E, Twyman RM, Buyel JF. Current status and perspectives of the molecular farming landscape. In: Kermode AR, Jiang L. eds. Molecular Pharming: Applications, Challenges, and Emerging Areas. Hoboken, NJ, USA: John Wiley & Sons; 2018: 3-24
  • 43 Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of systems for the for the production of plant-derived biopharmaceuticals. Plants (Basel) 2019; 9: 30
  • 44 Demurtas OC, Massa S, Illiano E, De Martinis D, Chan PK, Di Bonito P, Franconi R. Antigen production in plant to tackle infectious diseases flare up: The case of SARS. Front Plant Sci 2016; 7: 54
  • 45 Mazalovska M, Varadinov N, Koynarski T, Minkov I, Teoharov P, Lomonossoff GP, Zahmanova G. Detection of serum antibodies to hepatitis E virus based on HEV genotype 3 ORF2 capsid protein expressed in Nicotiana benthamiana . Ann Lab Med 2017; 37: 313-319
  • 46 Mbewana S, Meyers AE, Weber B, Mareledwane V, Ferreira ML, Majiwa PAO, Rybicki EP. Expression of Rift Valley fever virus N-protein in Nicotiana benthamiana for use as a diagnostic antigen. BMC Biotechnol 2018; 18: 77
  • 47 Marques LÉC, Silva BB, Dutra RF, Florean EOPT, Menassa R, Guedes MIF. Transient expression of dengue virus NS1 antigen in Nicotiana benthamiana for use as a diagnostic antigen. Front Plant Sci 2020; 10: 1674
  • 48 Williams L, Jurado S, Llorente F, Romualdo A, González S, Saconne A, Bronchalo I, Martínez-Cortes M, Pérez-Gómez B, Ponz F, Jiménez-Clavero MÁ, Lunello P. The C-terminal half of SARS-CoV-2 nucleocapsid protein, industrially produced in plants, is valid as antigen in COVID-19 serological tests. Front Plant Sci 2021; 12: 699665
  • 49 Rattanapisit K, Yusakul G, Shanmugaraj B, Kittirotruji K, Suwatsrisakul P, Prompetchara E, Taychakhoonavud S, Phoolcharoen W. Plant-produced recombinant SARS-CoV-2 receptor-binding domain; an economical, scalable biomaterial source for COVID-19 diagnosis. Biomater Transl 2021; 2: 43
  • 50 Shanmugaraj B, Khorattanakulchai N, Panapitakkul C, Malla A, Im-Erbsin R, Inthawong M, Sunyakumthorn P, Hunsawong T, Klungthong C, Reed MC, Kemthong T, Suttisan N, Malaivijitnond S, Srimangkornkaew P, Klinkhamhom A, Manopwisedjaroen S, Thitithanyanont A, Taychakhoonavudh S, Phoolcharoen W. Preclinical evaluation of a plant-derived SARS-CoV-2 subunit vaccine: Protective efficacy, immunogenicity, safety, and toxicity. Vaccine 2022; 40: 4440-4452
  • 51 Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 2005; 227: 385-392
  • 52 Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine leukaemia virus: Current epidemiological circumstance and future prospective. Viruses 2021; 13: 2167
  • 53 Zhumabek AT, Abeuova LS, Mukhametzhanov NS, Scholthof HB, Ramankulov YM, Manabayeva SA. Transient expression of a bovine leukemia virus envelope glycoprotein in plants by a recombinant TBSV vector. J Virol Methods 2018; 255: 1-7
  • 54 Porngarm B, Ahmad A, Neelasawee K, Joiphaeng P, Hoonsuwan T, Rattanapisit K, Shanmugaraj B, Phoolcharoen W. Expression of porcine reproductive and respiratory syndrome virus nucleocapsid protein in nicotiana benthamiana for diagnostic applications. Adv Anim Vet Sci 2020; 9: 576-580
  • 55 Bortolami A, Donini M, Marusic C, Lico C, Drissi Touzani C, Gobbo F, Mazzacan E, Fortin A, Panzarin VM, Bonfante F, Baschieri S, Terregino C. Development of a novel assay based on plant-produced infectious bursal disease virus VP3 for the differentiation of infected from vaccinated animals. Front Plant Sci 2021; 12: 786871
  • 56 Shanmugaraj B, Malla A, Phoolcharoen W. Emergence of novel coronavirus 2019-nCoV: Need for rapid vaccine and biologics development. Pathogens 2020; 9: 148
  • 57 Fearon SH, Dennis SJ, Hitzeroth II, Rybicki EP, Meyers AE. Plant expression systems as an economical alternative for the production of iELISA coating antigen AHSV VP7. N Biotechnol 2022; 68: 48-56
  • 58 Takova K, Koynarski T, Minkov G, Toneva V, Mardanova E, Ravin N, Lukov GL, Zahmanova G. Development and optimization of an enzyme immunoassay to detect serum antibodies against the hepatitis e virus in pigs, using plant-derived ORF2 recombinant protein. Vaccines (Basel) 2021; 9: 991
  • 59 Makatsa MS, Tincho MB, Wendoh JM, Ismail SD, Nesamari R, Pera F, de Beer S, David A, Jugwanth S, Gededzha MP, Mampeule N, Sanne I, Stevens W, Scott L, Blackburn J, Mayne ES, Keeton RS, Burgers WA. SARS-CoV-2 antigens expressed in plants detect antibody responses in COVID-19 patients. Front Plant Sci 2021; 12: 589940
  • 60 Tariq M, Hur J, Seo JW, Kim DY, Yun NR, Lee YM, Bang MS, Hwang SY, Kim CM, Lee JH, Song KH, Lee H, Jung J, Park JY, Kim HB, Kim ES, Lee S, Kim DM. Usefulness of ELISA using total antibody against plant-expressed recombinant nucleocapsid protein of SARS-CoV-2. Microbiol Spectr 2021; 9: e0067221
  • 61 Gómez E, Cassani MF, Lucero MS, Parreño V, Chimeno Zoth S, Berinstein A. Development of diagnostic tools for IBDV detection using plants as bioreactors. AMB Express 2020; 10: 95
  • 62 Xisto MF, Dias RS, Feitosa-Araujo E, Prates JWO, da Silva CC, de Paula SO. Efficient plant production of recombinant NS1 protein for diagnosis of dengue. Front Plant Sci 2020; 11: 581100
  • 63 Ma F, Zhang E, Li Q, Xu Q, Ou J, Yin H, Li K, Wang L, Zhao X, Niu X, Li X, Zhang S, Wang Y, Deng R, Zhou E, Zhang G. A plant-produced recombinant fusion protein-based newcastle disease subunit vaccine and rapid differential diagnosis platform. Vaccines (Basel) 2020; 8: 122
  • 64 Williams R, Ellis CE, Smith SJ, Potgieter CA, Wallace D, Mareledwane VE, Majiwa PA. Validation of an IgM antibody capture ELISA based on a recombinant nucleoprotein for identification of domestic ruminants infected with Rift Valley fever virus. J Virol Methods 2011; 177: 140-146
  • 65 Ellis CE, Mareledwane VE, Williams R, Wallace DB, Majiwa PA. Validation of an ELISA for the concurrent detection of total antibodies (IgM and IgG) to Rift Valley fever virus. Onderstepoort J Vet Res 2014; 81: 1-6
  • 66 Atkinson R, Burt F, Rybicki EP, Meyers AE. Plant-produced Crimean-Congo haemorrhagic fever virus nucleoprotein for use in indirect ELISA. J Virol Methods 2016; 236: 170-177
  • 67 Chan PK, Liu EY, Leung DT, Cheung JL, Ma CH, Tam FC, Hui M, Tam JS, Lim PL. Evaluation of a recombinant nucleocapsid protein-based assay for anti-SARS-CoV IgG detection. J Med Virol 2005; 75: 181-184
  • 68 Amaro MO, Xisto MF, Dias AC, Versiani AF, Cardoso SA, Otoni WC, da Silva CC, De Paula SO. Antigen production using heterologous expression of dengue virus-2 non-structural protein 1 (NS1) in Nicotiana tabacum (Havana) for immunodiagnostic purposes. Plant Cell Rep 2015; 34: 919-928
  • 69 Ganapathy M, Chakravarthi M, Charles SJ, Harunipriya P, Jaiganesh S, Subramonian N, Kaliraj P. Immunodiagnostic properties of Wucheraria bancrofti SXP-1, a potential filarial diagnostic candidate expressed in tobacco plant, Nicotiana tabacum . Appl Biochem Biotechnol 2015; 176: 1889-1903
  • 70 Maldaner FR, Aragão FJ, dos Santos FB, Franco OL, da Rocha Queiroz Lima M, de Oliveira Resende R, Vasques RM, Nagata T. Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Appl Microbiol Biotechnol 2013; 97: 5721-5729
  • 71 Pérez-Filgueira DM, Brayfield BP, Phiri S, Borca MV, Wood C, Morris TJ. Preserved antigenicity of HIV-1 p 24 produced and purified in high yields from plants inoculated with a tobacco mosaic virus (TMV)-derived vector. J Virol Methods 2004; 121: 201-208