Subscribe to RSS
DOI: 10.1055/s-2008-1042906
Efficient Access to Isoxazoles from Alkenes
Publication History
Publication Date:
11 March 2008 (online)

Abstract
The direct regioselective synthesis of 3,5-disubstituted isoxazoles was achieved in one reaction vessel through a sequence of reactions involving the net bromination of an electron-deficient alkene, in situ generation of a nitrile oxide, 1,3-dipolar cycloaddition, and loss of HBr from an intermediate 5,5-disubstituted bromoisoxazoline. This one-pot process enables the synthesis of 3,5-disubstituted isoxazoles directly from electron-deficient alkenes thereby negating the isolation of the 1,1-disubstituted bromoalkene alkyne surrogate.
Key words
cycloadditions - heterocycles - tandem reactions - alkyne surrogate - dehydrohalogenation
- 1 
             
            Talley JJ.Brown DL.Carter JS.Graneto MJ.Koboldt CM.Masferrer JL.Perkins WE.Rogers RS.Shaffer AF.Zhang YY.Zweifel BS.Seibert K. J. Med. Chem. 2000, 43: 775
- 2a 
             
            Lee Y.-S.Kim BH. Bioorg. Med. Chem. Lett. 2002, 12: 1395
- 2b 
             
            Srivastava S.Bajpai LK.Batra S.Bhaduri AP.Maikhuri JP.Gupta G.Dhar JD. Bioorg. Med. Chem. 1999, 7: 2607
- 3a 
             
            Simoni D.Grisolia G.Giannini G.Roberti M.Rondanin R.Piccagli L.Baruchello R.Rossi M.Romagnoli R.Invidiata FP.Grimaudo S.Jung MK.Hamel E.Gebbia N.Crosta L.Abbadessa V.Di Cristina A.Dusonchet L.Meli M.Tolomeo M. J. Med. Chem. 2005, 48: 723
- 3b 
             
            Kaffy J.Pontikis R.Carrez D.Croisy A.Monneret C.Florent J.-C. Bioorg. Med. Chem. 2006, 14: 4067
- 4a 
             
            Pruitt JR.Pinto DJ.Estrella MJ.Bostrom LL.Knabb RM.Wong PC.Wright MR.Wexler RR. Bioorg. Med. Chem. Lett. 2000, 10: 685
- 4b 
             
            Nantermet PG.Barrow JC.Lundell GF.Pellicore JM.Rittle KE.Young M.Freidinger RM.Connolly TM.Condra C.Karczewski J.Bednar RA.Gaul SL.Gould RJ.Prendergast K.Selnick HG. Bioorg. Med. Chem. Lett. 2002, 12: 319
- 4c 
             
            Batra S.Srinivasan T.Rastogi SK.Kundu B.Patra A.Bhaduri AP.Dixit M. Bioorg. Med. Chem. Lett. 2002, 12: 1905
- 4d 
             
            Batra S.Roy AK.Patra A.Bhaduri AP.Surin WR.Raghavan SAV.Sharma P.Kapoor K.Dikshit M. Bioorg. Med. Chem. 2004, 12: 2059
- 5 
             
            Jung HK.Doddareddy MR.Cha JH.Rhim H.Cho YS.Koh HY.Jung BY.Pae AN. Bioorg. Med. Chem. 2004, 12: 3965
- 6a 
             
            Sandanayaka VP.Youjun Y. Org. Lett. 2000, 2: 3087
- 6b 
             
            Croce PD.La Rosa C.Zecchi G. J. Chem. Soc., Perkin Trans. 1 1985, 2621
- 6c 
             
            Easton CJ.Heath GA.Hughes CMM.Lee CKY.Savage GP.Simpson GW.Tiekink ERT.Vuckovic GJ.Webster RD. J. Chem. Soc., Perkin Trans. 1 2001, 1168
- 7 
             
            Dadiboyena S.Xu J.Hamme AT. Tetrahedron Lett. 2007, 48: 1295
- 8 
             
            Hamme AT.Xu J.Wang J.Cook T.Ellis E. Heterocycles 2005, 65: 2885
- 9a 
             
            Houk KN.Sims J.Duke RE.Strozier RW.George JK. J. Am. Chem. Soc. 1973, 95: 7287
- 9b 
             
            Houk KN.Sims J.Watts CR.Luskus LJ. J. Am. Chem. Soc. 1973, 95: 7301
- 9c 
             
            Houk KN. Acc. Chem. Res. 1975, 8: 361
- 9d 
             
            Padwa A. 1,3-Dipolar Cycloaddition Chemistry John Wiley and Sons; New York: 1984.
- 10a 
             
            Dunn GL.DiPasquo VJ.Hoover JRE. J. Org. Chem. 1968, 33: 1454
- 10b 
             
            Smith AB.Branca SJ.Pilla NN.Guaciaro MA. J. Org. Chem. 1982, 47: 1855
- 10c 
             
            Hanessian S.Mainetti E.Lecomte F. Org. Lett. 2006, 8: 4047
- 11 
             
            Zamponi GW.Stotz SC.Staples RJ.Andro TM.Nelson JK.Hulubei V.Blumenfeld A.Natale NR. J. Med. Chem. 2003, 46: 87
- 12a 
             
            Pathak R.Roy AK.Kanojiya S.Batra S. Tetrahedron Lett. 2005, 46: 5289
- 12b 
             
            Patra A.Batra S.Bhaduri AP.Khanna A.Chander R.Dikshit M. Bioorg. Med. Chem. 2003, 11: 2269
- 13a 
             
            Sandanayaka VP.Youjun Y. Org. Lett. 2000, 2: 3087
- 13b 
             
            Croce PD.La Rosa C.Zecchi G. J. Chem. Soc., Perkin Trans. 1 1985, 2621
- 14a 
             
            Miyaoka H.Kajiwara Y.Hara Y.Yamada Y. J. Org. Chem. 2001, 66: 1429
- 14b 
             
            Trost BM.Bridges AJ.
 J. Org. Chem. 1975, 40: 2014
References and Notes
         General Experimental Procedure
         
After the alkene (0.5 mmol) was dissolved in CH2Cl2 (15 mL), bromine (0.55 mmol) was added dropwise. After all of the alkene was completely
         consumed, as confirmed by TLC on silica gel (hexanes-EtOAc, 4:1), the hydroximoyl
         chloride (0.5 mmol) was added, and Et3N (1.2 mmol) was added shortly thereafter. The reaction mixture was stirred at r.t.
         until the disappearance of the bromoalkene, as verified by TLC on silica gel (hexanes-EtOAc,
         4:1). The reaction mixture was washed with H2O (3 × 10 mL), and the organic layer was dried over anhyd Na2SO4. The crude products were purified by flash column chromatography over silica gel
         using hexanes-EtOAc (4:1) as the eluent system. This procedure provides pure isoxazole
         products for entries 1-15 in 58-97% yield.
         Spectroscopic data for Entry 9, Table 1
         
Colorless solid (74 mg, 73%), mp 84-87 °C. IR (CaF2, CCl4): ν = 1696 cm-1. 1H NMR: δ = 3.89 (s, 3 H), 7.00 (d, J = 8.9 Hz, 2 H), 7.25 (s, 1 H), 7.79 (d, J = 8.9 Hz, 2 H), 10.02 (s, 1 H). 13C NMR: δ = 55.4, 106.4, 114.2 (2 C), 119.9, 128.3 (2 C), 161.5, 162.7, 165.9, 178.5.
         HRMS (EI): m/z calcd for C11H9NO3 [M+ + 1]: 203.0582; found: 203.0628. All spectroscopic and HRMS data were obtained for
         previously unreported compounds.
 
    