Subscribe to RSS
DOI: 10.1055/s-2008-1000874
Polyionic Heterogeneous Phenylating Agent for Base-Free Suzuki-Miyaura Coupling Reaction
Publication History
Publication Date:
21 December 2007 (online)
Abstract
A new polyionic resin-bound tetraphenylborate has been prepared, which can serve as efficient phenylating agent in Pd-catalyzed Suzuki-Miyaura (SM) coupling with aryl halides in the absence of any base. The conditions are mild, operationally simple and the polyionic resin can be recharged and reused for several runs.
Key words
polyionic resins - tetraphenylborate - Suzuki-Miyaura coupling - base-free conditions - biphenyls
- For reviews, see:
 - 1a 
             
            
Hassan J.Sevignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 - 1b 
             
            
Kotha S.Lahiri K.Kashinath D. Tetrahedron 2002, 58: 9633 - 1c 
             
            
Chemler SR.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4544 - 1d 
             
            
Suzuki A. J. Organomet. Chem. 1999, 576: 147 - 1e 
             
            
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 - 1f 
             
            
Miyaura N. Top. Curr. Chem. 2002, 219: 11 - 1g 
             
            
Bellina F.Carpita A.Rossi R. Synthesis 2004, 2419 - 2 
             
            
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442 - 3a 
             
            
Leadbeater NE.Marco M. Angew. Chem. Int. Ed. 2003, 42: 1407 - 3b 
             
            
Leadbeater NE.Marco M. J. Org. Chem. 2003, 68: 5660 - 3c 
             
            
Arvela RK.Leadbeater NE.Sangi MS.Williams VA.Granados P.Singer RD. J. Org. Chem. 2005, 70: 161 - 4a 
             
            
Yan J.Hu W.Zhou W. Synth. Commun. 2006, 36: 2097 - 4b 
             
            
Yan J.Zhou Z.Zhu M. Synth. Commun. 2006, 36: 1495 - 5a 
             
            
Molander GA.Rivero MR. Org. Lett. 2002, 4: 107 - 5b 
             
            
Molander GA.Biolatto B. J. Org. Chem. 2003, 68: 4302 - 5c 
             
            
Lidstrom P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 57: 9925 - 5d 
             
            
Kabalka GW.Al-Masum M. Tetrahedron Lett. 2005, 46: 6329 - 6a 
             
            
Kirschning A.Monenschein H.Wittenberg R. Chem. Eur. J. 2000, 6: 4445 - 6b 
             
            
Keay JG.Scriven EFV. Chem. Ind. (London) 1994, 53: 339 - 6c 
             
            
Khound S.Das PJ. Tetrahedron 1997, 53: 9749 - 7 
             
            
Farrall MJ.Fréchet JMJ. J. Org. Chem. 1976, 41: 3877 - 8 
             
            
Frenette R.Friesen RW. Tetrahedron Lett. 1994, 35: 9177 - For some recent examples, see:
 - 9a 
             
            
Roller S.Turk H.Stumbe J.-F.Rapp W.Haag R. J. Comb. Chem. 2006, 8: 350 - 9b 
             
            
Zheng Y.Stevens PD.Gao Y. J. Org. Chem. 2006, 71: 537 - 9c 
             
            
Nielsen TE.Quement SL.Meldal M. Tetrahedron Lett. 2005, 46: 7959 - 9d 
             
            
Brown JF.Krajnc P.Cameron NR. Ind. Eng. Chem. Res. 2005, 44: 8565 - 9e 
             
            
Bork JT.Lee JW.Chang Y.-T. Tetrahedron Lett. 2003, 44: 6141 - 9f 
             
            
Wade JV.Krueger CA. J. Comb. Chem. 2003, 5: 267 - 9g 
             
            
Hebel A.Haag R. J. Org. Chem. 2002, 67: 9452 - As compared to other polymeric frameworks, examples using solid polyionic resins to immobilize organoboron species for use in SM couplings are limited. A few examples on the immobilization of arylboronic acids are:
 - 10a 
             
            
Wulff G.Schmidt H.Witt H.Zentel R. Angew. Chem., Int. Ed. Engl. 1994, 33: 188 - 10b 
             
            
Guiles JW.Johnson SG.Murray WV. J. Org. Chem. 1996, 61: 5169 - 10c 
             
            
Piettre SR.Baltzer S. Tetrahedron Lett. 1997, 38: 1197 - 10d 
             
            
Kell RJ.Hodge P.Nisar M.Williams RT. J. Chem. Soc., Perkin Trans. 1 2001, 3403 - 11 
             
            
Lobrégat V.Alcaraz G.Bienayme H.Vaultier M. Chem. Commun. 2001, 817 - 12a 
             
            
Basu B.Das S.Das P.Nanda AK. Tetrahedron Lett. 2005, 46: 8591 - 12b 
             
            
Basu B.Das P.Das S. Mol. Diversity 2005, 9: 259 - 12c 
             
            
Basu B.Bhuiyan MMH.Das P.Hossain I. Tetrahedron Lett. 2003, 44: 8931 - 14 
             
            
Suzuki A. Chem. Commun. 2005, 4759 - 15a 
             
            
Miyaura N.Ishiyama T.Ishikawa M.Suzuki A. Tetrahedron Lett. 1986, 27: 6369 - 15b 
             
            
Miyaura N.Ishiyama T.Sasaki H.Ishikawa M.Satoh M.Suzuki A. J. Am. Chem. Soc. 1989, 111: 314 - 16 
             
            
Gropen O.Haaland A. Acta. Chem. Scand. 1973, 27: 521 - 17 
             
            
Miyaura N.Yamada K.Suginome H.Suzuki A. J. Am. Chem. Soc. 1985, 107: 972 - 18 
             
            
Darses S.Genet JP.Brayer JL. Tetrahedron Lett. 1997, 37: 4393 - 19a 
             
            
Fürstner A.Seidel G. Tetrahedron 1995, 51: 11165 - 19b 
             
            
Smith GB.Denezy GC.Hughes DL.King AO.Verhoeven TR. J. Org. Chem. 1994, 59: 8151 - 19c 
             
            
Aliprantis AO.Canary JW. J. Am. Chem. Soc. 1994, 116: 6985 - 19d 
             
            
Wright SW.Hageman DL.McClure LD. J. Org. Chem. 1994, 59: 6095 - 21 For a review, see:  
            
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176 - 22a 
             
            
Old DW.Wolfe JP.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 9722 - 22b 
             
            
Botella L.Nájera C. Angew. Chem. Int. Ed. 2002, 41: 179 
References and Notes
Amberlite® IRA-900 resin (chloride form; 2.50 g) was stirred with aq NaBPh4 (1.73 g) until complete exchange as judged by Cl- loss (AgNO3). The exchanged resin was washed with H2O, acetone and dried to give the tetra-phenylborate-form resin (3.92 g). The mass difference between product and starting materials (ca. 310 mg) was comparable with the calculated difference (296 mg). The resulting borate-bound resin thus contained a 1.14 mmol g-1 loading of the borate ions and was used directly in the SM coupling reactions.
20Representative Procedure for Suzuki-Miyaura Reaction: A mixture of 3-iodotoluene (218 mg, 1 mmol), Amberlite resin (Ph4B- form) (1 g, 1.14 mmol) and Pd(OAc)2 (4.5 mg, 2 mol%) was taken in DMF (2 mL) and heated in an oil bath at 85 °C for 2 h. After cooling, the reaction mixture was diluted with H2O (5 mL) and the resin was filtered off. The filtrate was extracted with Et2O (3 × 15 mL) and the combined organic layers were dried over anhyd Na2SO4. Removal of the solvent left an oily residue, which was passed through a short column of silica gel (60-120 mesh) eluting with light petroleum to afford 3-phenyltoluene as a colorless liquid (161 mg, yield 96%). IR (neat): 3031, 2900, 1604 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.84-7.87 (m, 2 H), 7.56-7.71 (m, 6 H), 7.42 (d, J = 7.2 Hz, 1 H), 2.67 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 141.3, 141.2, 138.2, 128.7, 128.6, 127.94, 127.89, 127.2, 127.1, 124.2, 21.5.
23After the first run, the resin beads were filtered off, washed with MeOH, then with H2O and finally rinsed again with aq NaBPh4 solution. The resulting borate-bound resin could be reused for the SM reaction. Employing the recovered and recharged resin (tetraphenylborate form) for SM coupling with 3-iodotoluene (1 mmol scale), provided the desired biaryl in 95% yield. The three subsequent runs gave the biaryl in 92%, 92% and 88% yields.