Exp Clin Endocrinol Diabetes 2007; 115(10): 674-682
DOI: 10.1055/s-2007-984477
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Reduced TGF-ß1 Expression and its Target Genes in Human Insulinomas

A. Nabokikh 1 , A. Ilhan 1 , M. Bilban 2 , W. Gartner 1 , G. Vila 1 , B. Niederle 3 , J. H. Nielsen 4 , O. Wagner 2 , W. Base 1 , A. Luger 1 , L. Wagner 1
  • 1Department of Medicine III, Medical University of Vienna
  • 2Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna and Ludwig Boltzmann Institute for Clinical and Experimental Oncology
  • 3Department of Endocrine Surgery, Medical University of Vienna
  • 4Department of Medical Biochemistry and Genetics, University of Copenhagen
Further Information

Publication History

received 21.03.2007 first decision 30.05.2007

accepted 22.06.2007

Publication Date:
30 November 2007 (online)

Abstract

Aiming to identify signalling pathways relevant for ß-cell growth we performed an explorative micro-array analysis comparing the gene expression profiles of three human insulinomas and one normal pancreatic islet preparation. This revealed an insulinoma-associated down-regulation of the transforming growth factor beta 1 (TGF-ß1) and its target genes. Comparative quantitative real-time PCR (qRT-PCR) including an expanded sample number of both insulinomas (n=9) and pancreatic islet preparations (n=4) confirmed the decreased TGF-ß1 expression and its target molecules (TGFBI, NNMT, RPN2) in insulinomas. Similarly, TGF-ß1 immunofluorescense analysis revealed reduced expression in insulinomas when compared to pancreatic islets. In contrast, TGFBR2 (transforming growth factor beta receptor II) was found up-regulated. However, the consistent down-regulation of the TGF-ß1 targets TGFBI (transforming growth factor, beta-induced), NNMT (nicotinamide N-methyltransferase), RPN2 (ribophorin II) indicates that the parallel up-regulation of TGFBR2 does not compensate for the only marginal TGF-ß1 expression levels in insulinomas. TGFBR2 expression was confirmed at the protein level in insulinomas. SMAD2/3 protein expression was found at higher levels in human pancreatic islets when compared with insulinomas by dual colour confocal microscopy. TGF-ß1 signalling is known to be involved in cell replication and is abrogated in ductal pancreatic tumours. The down-regulation of TGF-ß1 expression and its target molecules in insulinomas is a new aspect of this cytokine. Our data underline parallels in endocrine and exocrine pancreatic tumour development, which may implicate common progenitor cells.

References

  • 1 Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells.  Endocrinology. 2002;  143 3152-3161
  • 2 Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer.  Genes Dev. 2006;  20 3130-3146
  • 3 Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C, Malli R, Sharabi A, Hiden U, Graier W, Knofler M, Andreae F, Wagner O, Quaranta V, Desoye G. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts.  J Cell Sci. 2004;  117 1319-1328
  • 4 Birkenkamp-Demtroder K, Wagner L, Brandt Sorensen F, Bording Astrup L, Gartner W, Scherubl H, Heine B, Christiansen P, Orntoft TF. Secretagogin is a novel marker for neuroendocrine differentiation.  Neuroendocrinology. 2005;  82 121-138
  • 5 Boden G, Murer E, Mozzoli M. Glucose transporter proteins in human insulinoma.  Ann Intern Med. 1994;  121 109-112
  • 6 Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O'Neil JJ. In vitro cultivation of human islets from expanded ductal tissue.  Proc Natl Acad Sci USA. 2000;  97 7999-8004
  • 7 Bonner-Weir S, Weir GC. New sources of pancreatic beta-cells.  Nat Biotechnol. 2005;  23 857-861
  • 8 Brat DJ, Lillemoe KD, Yeo CJ, Warfield PB, Hruban RH. Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas.  Am J Surg Pathol. 1998;  22 163-169
  • 9 Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching.  Am J Pathol. 2003;  162 533-546
  • 10 Tour D de la, Halvorsen T, Demeterco C, Tyrberg B, Itkin-Ansari P, Loy M, Yoo SJ, Hao E, Bossie S, Levine F. Beta-cell differentiation from a human pancreatic cell line in vitro and in vivo.  Mol Endocrinol. 2001;  15 476-483
  • 11 Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation.  Nature. 2004;  429 41-46
  • 12 Dudoit S, Gentleman RC, Quackenbush J. Open source software for the analysis of microarray data.  Biotechniques. 2003;  , Suppl 45-51
  • 13 Friedrichsen BN, Galsgaard ED, Nielsen JH, Moldrup A. Growth hormone- and prolactin-induced proliferation of insulinoma cells, INS-1, depends on activation of STAT5 (signal transducer and activator of transcription 5).  Mol Endocrinol. 2001;  15 136-148
  • 14 Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture.  Diabetes. 2003;  52 2007-2015
  • 15 Gartner W, Koc F, Nabokikh A, Daneva T, Niederle B, Luger A, Wagner L. Long-term in vitro growth of human insulin-secreting insulinoma cells.  Neuroendocrinology. 2006;  83 123-130
  • 16 Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas.  Cancer Res. 1998;  58 5329-5332
  • 17 Hashimoto K, Noshiro M, Ohno S, Kawamoto T, Satakeda H, Akagawa Y, Nakashima K, Okimura A, Ishida H, Okamoto T, Pan H, Shen M, Yan W, Kato Y. Characterization of a cartilage-derived 66-kDa protein (RGD-CAP/beta ig-h3) that binds to collagen.  Biochim Biophys Acta. 1997;  1355 303-314
  • 18 Herrera PL. Defining the cell lineages of the islets of Langerhans using transgenic mice.  Int J Dev Biol. 2002;  46 97-103
  • 19 Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, Furth EE, Furukawa T, Klein A, Klimstra DS, Kloppel G, Lauwers GY, Longnecker DS, Luttges J, Maitra A, Offerhaus GJ, Perez-Gallego L, Redston M, Tuveson DA. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations.  Cancer Res. 2006;  66 95-106
  • 20 Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data.  Nucleic Acids Res. 2003;  31 e15
  • 21 Kuang C, Xiao Y, Liu X, Stringfield TM, Zhang S, Wang Z, Chen Y. In vivo disruption of TGF-beta signaling by Smad7 leads to premalignant ductal lesions in the pancreas.  Proc Natl Acad Sci USA. 2006;  103 1858-1863
  • 22 Lai M, Lu B, Xing X, Xu E, Ren G, Huang Q. Secretagogin, a novel neuroendocrine marker, has a distinct expression pattern from chromogranin A.  Virchows Arch. 2006;  449 402-409
  • 23 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.  Methods. 2001;  25 402-408
  • 24 Logsdon CD, Keyes L, Beauchamp RD. Transforming growth factor-beta (TGF-beta 1) inhibits pancreatic acinar cell growth.  Am J Physiol. 1992;  262 G364-8
  • 25 Mashima H, Ohnishi H, Wakabayashi K, Mine T, Miyagawa J, Hanafusa T, Seno M, Yamada H, Kojima I. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells.  J Clin Invest. 1996;  97 1647-1654
  • 26 Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders.  Cell. 2000;  103 295-309
  • 27 Murray HE, Paget MB, Downing R. Preservation of glucose responsiveness in human islets maintained in a rotational cell culture system.  Mol Cell Endocrinol. 2005;  238 39-49
  • 28 Nielsen JH, Svensson C, Galsgaard ED, Moldrup A, Billestrup N. Beta cell proliferation and growth factors.  J Mol Med. 1999;  77 62-66
  • 29 Sanvito F, Herrera PL, Huarte J, Nichols A, Montesano R, Orci L, Vassalli JD. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro.  Development. 1994;  120 3451-3462
  • 30 Sasaki H, Sato T, Yamauchi N, Okamoto T, Kobayashi D, Iyama S, Kato J, Matsunaga T, Takimoto R, Takayama T, Kogawa K, Watanabe N, Niitsu Y. Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1.  J Immunol. 2002;  168 5178-5183
  • 31 Sayo Y, Hosokawa H, Imachi H, Murao K, Sato M, Wong NC, Ishida T, Takahara J. Transforming growth factor beta induction of insulin gene expression is mediated by pancreatic and duodenal homeobox gene-1 in rat insulinoma cells.  Eur J Biochem. 2000;  267 971-978
  • 32 Sjoholm A, Hellerstrom C. TGF-beta stimulates insulin secretion and blocks mitogenic response of pancreatic beta-cells to glucose.  Am J Physiol. 1991;  260 C1046-C1051
  • 33 Totsuka Y, Tabuchi M, Kojima I, Eto Y, Shibai H, Ogata E. Stimulation of insulin secretion by transforming growth factor-beta.  Biochem Biophys Res Commun. 1989;  158 1060-1065
  • 34 Trucco M. Regeneration of the pancreatic beta cell.  J Clin Invest. 2005;  115 5-12
  • 35 Wagner L, Oliyarnyk O, Gartner W, Nowotny P, Groeger M, Kaserer K, Waldhausl W, Pasternack MS. Cloning and expression of secretagogin, a novel neuroendocrine- and pancreatic islet of Langerhans-specific Ca2+-binding protein.  J Biol Chem. 2000;  275 24740-24751
  • 36 Wang XC, Xu SY, Wu XY, Song HD, Mao YF, Fan HY, Yu F, Mou B, Gu YY, Xu LQ, Zhou XO, Chen Z, Chen JL, Hu RM. Gene expression profiling in human insulinoma tissue: genes involved in the insulin secretion pathway and cloning of novel full-length cDNAs.  Endocr Relat Cancer. 2004;  11 295-303
  • 37 Wilentz RE, Iacobuzio-Donahue CA, Argani P, MacCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression.  Cancer Res. 2000;  60 2002-2006
  • 38 Xu L, Massague J. Nucleocytoplasmic shuttling of signal transducers.  Nat Rev Mol Cell Biol. 2004;  5 209-219
  • 39 Yoon KH, Quickel RR, Tatarkiewicz K, Ulrich TR, Hollister-Lock J, Trivedi N, Bonner-Weir S, Weir GC. Differentiation and expansion of beta cell mass in porcine neonatal pancreatic cell clusters transplanted into nude mice.  Cell Transplant. 1999;  8 673-689

Correspondence

L. WagnerMD 

Department of Medicine III

MUV

Waehringer Guertel 18-20

1090 Vienna

Austria

Phone: +43/1/404 004 34 1

Fax: +43/1/404 007 79 0

Email: ludwig.wagner@meduniwien.ac.at

    >