Horm Metab Res 2007; 39(7): 482-488
DOI: 10.1055/s-2007-981681
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Systematic Analysis of the Insulinotropic and Glucagonotropic Potency of Saturated and Monounsaturated Fatty Acid Mixtures in Rat Pancreatic Islets

C. E. Wrede 1 , R. Buettner 1 , H. Wobser 1 , I. Ottinger 1 , L. C. Bollheimer 1
  • 1Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
Weitere Informationen

Publikationsverlauf

received 26.10.2006

accepted 24.1.2007

Publikationsdatum:
05. Juli 2007 (online)

Abstract

Background: Blood contains a mixture of different fatty acids (FFAs) with palmitate and oleate as major components whose molar ratio is dependent on dietary habits. Based on the theory of lipotoxicity for the development of type 2 diabetes such variances in the FFA composition might interfere with lipotoxic effects on the endocrine pancreas.

Methods: Using different ratios of FFA mixtures with palmitate and oleate, we have looked at FFA specific effects on the secretion of mature insulin and glucagon in isolated rat pancreatic islets.

Results: The insulinotropic potency of the oleate dominated FFA solutions was stronger than that of the palmitate dominated FFA mixtures. Conversely, the glucagonotropic potency was stronger in the palmitate dominated FFA mixtures. Palmitate and oleate similarly contributed to an impaired release of mature insulin at 16.7 mM of glucose.

Conclusion: Based on the present in vitro data, FFA specific differences in terms of glucagonotropic and insulinotropic potency appear rather slight. For the in vivo situation, it may be assumed that the dietary influence of saturated and monounsaturated fatty acids on hyperproinsulinemia or hyperglucagonemia are rather secondary for the development of type 2 diabetes.

References

  • 1 MacGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes.  Diabetes. 2002;  51 7-18
  • 2 Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells.  Diabetologia. 2003;  46 1297-1312
  • 3 Rhodes CJ. Type 2 diabetes - a matter of beta-cell life and death?.  Science. 2005;  307 380-384
  • 4 Bjorklund A, Grill V. Enhancing effects of long-term elevated glucose and palmitate on stored and secreted proinsulin-to-insulin ratios in human pancreatic islets.  Diabetes. 1999;  48 1409-1414
  • 5 Furukawa H, Carroll RJ, Swift HH, Steiner DF. Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6.  Diabetes. 1999;  48 1395-1401
  • 6 Bollheimer LC, Kestler TM, Michel J, Buettner R, Schölmerich J, Palitzsch KD. Intracellular depletion of insulin by oleate is due to an inhibited synthesis and not to an increased secretion.  Biochem Biophys Res Commun. 2001;  287 397-401
  • 7 Bollheimer LC, Landauer HC, Troll S, Schweimer J, Wrede CE, Schölmerich J, Buettner R. Stimulatory short-term effects of free fatty acids on glucagon secretion at low to normal glucose concentrations.  Metabolism. 2004;  53 1443-1448
  • 8 Bollheimer LC, Wrede CE, Rockmann F, Ottinger I, Schölmerich J, Buettner R. Glucagon production of the rat insulinoma cell line INS-1 - A quantitative comparison with primary rat pancreatic islets.  Biochem Biophys Res Commun. 2005;  330 327-332
  • 9 Olofsson CS, Salehi A, Gopel SO, Holm C, Rorsman P. Palmitate stimulation of glucagon secretion in mouse pancreatic alpha-cells. Results from activation of L-type calcium channels and elevation of cytoplasmic calcium.  Diabetes. 2004;  53 2836-2843
  • 10 Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, MacGarry JD. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation.  J Clin Invest. 1997;  100 398-403
  • 11 Alstrup KK, Gregersen S, Jensen HM, Thomsen JL, Hermansen K. Differential effects of cis and trans fatty acids on insulin release from isolated mouse islets.  Metabolism. 1999;  48 22-29
  • 12 Warnotte C, Nenquin M, Henquin JC. Unbound rather than total concentration and saturation rather than unsaturation determine the potency of fatty acids on insulin secretion.  Mol Cell Endocrinol. 1999;  153 147-153
  • 13 Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function.  Diabetes. 2001;  50 69-76
  • 14 Eitel K, Staiger H, Brendel MD, Brandhorst H, Bretzel RG, Haring HU, Kellerer M. Fettsäureinduzierte beta-Zell-Apoptose.  Med Klinik. 2003;  98 248-252
  • 15 Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function.  Diabetes. 2003;  52 726-733
  • 16 Richieri GV, Kleinfeld AM. Unbound free fatty acid levels in human serum.  J Lipid Res. 1995;  36 229-240
  • 17 Golay A, Swislocki AL, Chen YD, Jaspan JB, Reaven GM. Effect of obesity on ambient plasma glucose, free fatty acid, insulin, growth hormone, and glucagon concentrations.  J Clin Endocrinol Metab. 1996;  63 481-484
  • 18 Adams F, Jordan J, Schaller K, Luft FC, Boschmann M. Blood flow in subcutaneous adipose tissue depends on skin-fold thickness.  Horm Metab Res. 2005;  37 68-73
  • 19 Vessby B. Dietary fat, fatty acid composition in plasma and the metabolic syndrome.  Curr Opin Lipidol. 2003;  14 15-19
  • 20 Cousin SP, Hugl SR, Wrede CE, Kajio H, Myers MG, Rhodes CJ. Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic β-cell line INS-1.  Endocrinology. 2001;  142 229-240
  • 21 Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, Bollheimer LC. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types.  J Mol Endocrinol. 2006;  36 485-501
  • 22 Gravena C, Mathias PC, Ashcroft SJ. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans.  J Endocrinol. 2002;  173 73-80
  • 23 Haber EP, Procopio J, Carvalho CR, Carpinelli AR, Newsholme P, Curi R. New insights into fatty acid modulation of pancreatic beta-cell function.  Int Rev Cytol. 2006;  248 1-41
  • 24 Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion.  J Biol Chem. 1992;  267 5802-5810
  • 25 Zhou YP, Grill VE. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle.  J Clin Invest. 1994;  93 870-876
  • 26 Bollheimer LC, Skelly RH, Chester MW, MacGarry JD, Rhodes CJ. Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation.  J Clin Invest. 1998;  101 1094-1101
  • 27 Stefan N, Fritsche A, Madaus A, Haring H, Stumvoll M. Stimulatory effect of increased non-esterified fatty acid concentrations on proinsulin processing in healthy humans.  Diabetologia. 2000;  43 1368-1373
  • 28 Greenbaum CJ, Havel PJ, Taborsky GJ Jr, Klaff LJ. Intra-islet insulin permits glucose to directly suppress pancreatic. A cell function.  J Clin Invest. 1991;  88 767-773

Correspondence

L. C. BollheimerMD 

Department of Internal Medicine I

University of Regensburg

93042 Regensburg

Germany

Telefon: +49/941/944 70 03

Fax: +49/941/944 70 04

eMail: cornelius.bollheimer@klinik.uni-regensburg.de

    >