Planta Med 2001; 67(5): 396-399
DOI: 10.1055/s-2001-15810
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Effect of an Extract of the Root of Scutellaria baicalensis and its Flavonoids on Aflatoxin B1 Oxidizing Cytochrome P450 Enzymes

Bok-Ryang Kim1 , Dong-Hyun Kim2 , RaeKil Park1 , Kang-Beom Kwon3 , Do-gon Ryu3 , Youn-Chul Kim4 , Na-Young Kim4 , Sejn Jeong1 , Byung-Ki Kang3 , Kang-San Kim3,*
  • 1 Department of Biochemistry, Microbiology and Medicinal Resources Research Center, School of Medicine, Wonkwang University, Iksan, Korea
  • 2 Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul, Korea
  • 3 Department of Internal Medicine and Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Korea
  • 4 College of Pharmacy, Wonkwang University, Iksan, Korea
Further Information

Publication History

July 18, 2000

October 22, 2000

Publication Date:
31 December 2001 (online)

Abstract

The inhibition of aflatoxin B1 (AFB1) metabolism by a water extract of the root of Scutellaria baicalensis and its flavonoids was examined in liver microsomes. AFB1 is known to be metabolized to aflatoxin M1 (AFM1), aflatoxin Q1 (AFQ1), and AFB1-8,9-epoxide (AFBO). The water extract potently inhibited the production of AFM1 by cytochrome P450 (CYP)1A1/2 and slightly reduced AFBO formation by CYP1A1/2, CYP2B1, CYP2C11 and CYP3A1/2 in TCDD-treated rat liver microsomes. IC50 values for AFM1 and AFBO formation were 6.8 and 122.4 μg/ml, respectively. Wogonin showed the highest inhibitory activity towards AFM1 formation among the flavonoids isolated from the extract. On the other hand, the extract had no effects on the formation of AFBO and AFQ1 in human liver microsomes, and on the activities of CYP2B1, CYP2C11 and CYP3A1/2 which were detected by hydroxylation patterns of testosterone. These results demonstrated that the extract of the root of Scutellaria baicalensis has a specific inhibitory effect on CYP1A1/2 among CYP enzymes involved in AFB1 metabolism by rat and human microsomes.

References

  • 1 Liu G T. Effects of some compounds isolated from Chinese medicinal herbs on hepatic microsomal cytochrome P-450 and their potential biological consequences.  Drug. Metab. Rev.. 1991;  23 439-65
  • 2 Paolini M, Barillari J, Broccoli M, Pozzetti L, Perocco P, Cantelli-Forti G. Effect of liquorice and glycyrrhizin on rat liver carcinogen metabolizing enzymes.  Cancer Lett.. 1999;  145 35-42
  • 3 Nebert D W. Drug-metabolizing enzymes in ligand-modulated transcription.  Biochem. Pharmacol.. 1994;  47 25-37
  • 4 Tarrus E, Cami J, Roberts D J, Spickett R G, Celdran E, Segura J. Accumulation of caffeine in healthy volunteers treated with furafylline.  Br. J. Clin. Pharmacol.. 1987;  23 9-18
  • 5 Kimura Y, Yokoi K, Matsushita N, Okuda H. Effects of flavonoids isolated from Scutellariae radix on the production of tissue-type plasminogen activator and plasminogen activator inhibitor-1 induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells.  J. Pharm. Pharmacol.. 1997;  49 816-22
  • 6 Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of plavonoids extracted from the radix of Scutellaria baicalensis Georgi.  Biochim. Biophys. Acta. 1999;  1472 643-50
  • 7 Lee B H, Lee S J, Kang T H, Kim D H, Sohn D H, Ko G I, Kim Y C. Baicalein: an in vitro antigenotoxic compound from Scutellaria baicalensis .  Planta Medica. 2000;  66 70-1
  • 8 Takido M, Yasukawa K, Matsuura S, Iinuma M. On the revised structure of skullcapflavone I, a flavone compound in the roots of Scutellaria baicalensis Georgi.  Yakugaku Zasshi. 1979;  99 443-4
  • 9 Limura Y, Okuda H, Taira Z, Shoji N, Takemoto T, Arichi S. Studied on Scutellaria baicalensis IX. New component inhibiting lipid peroxidation in rat liver.  Planta Medica. 1984;  50 290-5
  • 10 Santostefano M J, Ross D G, Savas U, Jefcoate C R, Birnbaum L S. Differential time-course and dose-response relationships of TCDD-induced CYP1B1, CYP1A1, and CYP1A2 proteins in rats.  Biochem. Biophys. Res. Commun.. 1997;  233 20-4
  • 11 Lindstrom T D, Hanssen B R, Wrighton S A. Cytochrome P-450 complex formation by dirithromycin and other macrolides in rat and human livers.  Antimicrob. Agents. Chemother.. 1993;  37 265-9
  • 12 Kim B R, Oh H S, Kim D H. Differential inhibition of aflatoxin B1 oxidation by gestodene action on human liver microsomes.  Biochem. Mol. Biol. Int.. 1997;  43 839-46
  • 13 Kim S J, Lee J H, Oh H S, Kim B R. Inhibition effecte of 2-(allylthio)pyrazine on aflatoxin B1 metabolism and the activities of cytochrome P-450 involved in the metabolism.  J. Toxicol. Pub. Health.. 1999;  15 469-75
  • 14 Yoshizawa H, Uchimaru R, Kamataki T, Kato R, Ueno Y. Metabolism and activation of aflatoxin B1 by reconstituted cytochrome P-450 system of rat liver.  Cancer Res.. 1982;  42 1120-4
  • 15 Guengerich F P, Ueng Y F, Kim B R, Langouet S, Coles B, Iyer R S, Thier R, Harris T M, Shimada T, Yamazaki H, Ketterer B, Guillouzo A. Activation of toxic chemicals by cytochrome P450 enzymes: regio- and stereoselective oxidation of aflatoxin B1 Adv.  Exp. Med. Biol.. 1996;  387 7-15
  • 16 Wong B Y, Lau B H, Yamasaki T, Teel R W. Inhibition of dexamethasone-induced cytochrome P450-mediated mutagenicity and metabolism of aflatoxin B1 by Chinese medicinal herbs.  Eur. J. Cancer Prev.. 1993;  2 351-6
  • 17 Ishii K, Maeda K, Kamataki T, Kato R. Mutagenic activation of aflatoxin B1 by several forms of purified cytochrome P-450.  Mutat. Res.. 1986;  174 85-8
  • 18 Schlemper B, Harrison J, Garner R C, Oesch F, Steinberg P. DNA binding, adduct characterisation and metabolic activation of aflatoxin B1 catalysed by isolated rat liver parenchymal, Kupffer and endothelial cells.  Arch. Toxicol.. 1991;  65 633-9
  • 19 Gallagher E P, Kunze K L, Stapleton P L, Eaton D L. The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4.  Toxicol. Appl. Pharmacol.. 1996;  141 595-606
  • 20 Gokhale M S, Bunton T E, Zurlo J, Yager J D. Cytochrome P450 isoenzyme activities in cultured rat and mouse liver slices.  Xenobiotica. 1997;  27 341-55
  • 21 Sai Y, Dai R, Yang T J, Krausz K W, Gonzalez F J, Gelboin H V, Shou M. Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450.  Xenobiotica. 2000;  30 327-43
  • 22 Parkinson A. Biotransformation of xenobiotics. In: Klaassen CD, Amdur MO, Doull J, editors Toxicology: The basic science of poisons. New York; McGraw-Hill 1996: 113-86
  • 23 Ramos S, Sultatos L. Flavonoid-induced alterations in cytochrome P450-dependent biotransformation of the organophosphorus insecticide parathion in the mouse.  Toxicology. 1998;  131 155-67
  • 24 Backman J T, Maenpaa J, Wrighton S A, Kivisto K T, Neuvonen P J. Lack of correlation between in vitro and in vivo studies on the effects of tangeretin and tangerine juice on midazolam hydroxylation.  Clin. Pharmacol. Ther.. 2000;  67 382-90

Kang-San Kim

Department of Internal Medicine

School of Oriental Medicine

Wonkwang University

Iksan

Korea

Email: bokim@wonkwang.ac.kr

Fax: +82-63-841-1445

Phone: Tel: +82-63-850-6756

    >