Semin Thromb Hemost 2024; 50(03): 462-473
DOI: 10.1055/s-0043-1776875
Review Article

The Complex Role of Thrombin in Cancer and Metastasis: Focus on Interactions with the Immune System

Karolina Aleksandrowicz*
1   Department of Clinical Oncology, Medical University, Białystok, Poland
2   Comprehensive Cancer Center, Bialystok, Poland
,
Dominika Hempel*
1   Department of Clinical Oncology, Medical University, Białystok, Poland
2   Comprehensive Cancer Center, Bialystok, Poland
,
Barbara Polityńska
3   Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
,
Anna M. Wojtukiewicz
3   Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
,
Kenneth V. Honn
4   Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, Michigan
5   Department of Chemistry, Wayne State University, Detroit, Michigan
6   Department of Oncology, Wayne State University, Detroit, Michigan
,
Dean G. Tang
7   Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
,
Marek Z. Wojtukiewicz
1   Department of Clinical Oncology, Medical University, Białystok, Poland
2   Comprehensive Cancer Center, Bialystok, Poland
› Author Affiliations

Abstract

Thrombin, a pleiotropic enzyme involved in coagulation, plays a crucial role in both procoagulant and anticoagulant pathways. Thrombin converts fibrinogen into fibrin, initiates platelet activation, and promotes clot formation. Thrombin also activates anticoagulant pathways, indirectly inhibiting factors involved in coagulation. Tissue factor triggers thrombin generation, and the overexpression of thrombin in various cancers suggests that it is involved in tumor growth, angiogenesis, and metastasis. Increased thrombin generation has been observed in cancer patients, especially those with metastases. Thrombin exerts its effects through protease-activated receptors (PARs), particularly PAR-1 and PAR-2, which are involved in cancer progression, angiogenesis, and immunological responses. Thrombin-mediated signaling promotes angiogenesis by activating endothelial cells and platelets, thereby releasing proangiogenic factors. These functions of thrombin are well recognized and have been widely described. However, in recent years, intriguing new findings concerning the association between thrombin activity and cancer development have come to light, which justifies a review of this research. In particular, there is evidence that thrombin-mediated events interact with the immune system, and may regulate its response to tumor growth. It is also worth reevaluating the impact of thrombin on thrombocytes in conjunction with its multifaceted influence on tumor progression. Understanding the role of thrombin/PAR-mediated signaling in cancer and immunological responses is crucial, particularly in the context of developing immunotherapies. In this systematic review, we focus on the impact of the thrombin-related immune system response on cancer progression.

* These authors contributed equally to this article.




Publication History

Article published online:
20 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Huntington JA. Molecular recognition mechanisms of thrombin. J Thromb Haemost 2005; 3 (08) 1861-1872
  • 2 Polgar J, Matuskova J, Wagner DD. The P-selectin, tissue factor, coagulation triad. J Thromb Haemost 2005; 3 (08) 1590-1596
  • 3 Tsopanoglou NE, Maragoudakis ME. Thrombin's central role in angiogenesis and pathophysiological processes. Eur Cytokine Netw 2009; 20 (04) 171-179
  • 4 Wojtukiewicz MZ, Zacharski LR, Memoli VA. et al. Abnormal regulation of coagulation/fibrinolysis in small cell carcinoma of the lung. Cancer 1990; 65 (03) 481-485
  • 5 Sierko E, Wojtukiewicz MZ, Kisiel W. The role of tissue factor pathway inhibitor-2 in cancer biology. Semin Thromb Hemost 2007; 33 (07) 653-659
  • 6 Sierko E, Wojtukiewicz MZ, Zimnoch L, Kisiel W. Expression of tissue factor pathway inhibitor (TFPI) in human breast and colon cancer tissue. Thromb Haemost 2010; 103 (01) 198-204
  • 7 Wojtukiewicz MZ, Sierko E, Zacharski LR, Zimnoch L, Kudryk B, Kisiel W. Tissue factor-dependent coagulation activation and impaired fibrinolysis in situ in gastric cancer. Semin Thromb Hemost 2003; 29 (03) 291-300
  • 8 Wojtukiewicz MZ, Sierko E, Zimnoch L, Kozlowski L, Kisiel W. Immunohistochemical localization of tissue factor pathway inhibitor-2 in human tumor tissue. Thromb Haemost 2003; 90 (01) 140-146
  • 9 Radziwon P, Schenk JF, Mazgajska K. et al. Stezenie czynnika tkankowego i jego inhibitora u chorych na guzy układu moczowego i choroby rozrostowe układu krwiotwórczego. [Tissue factor (TF) and inhibitor (TFPI) concentrations in patients with urinary tract tumors and haematological malignancies.]. Pol Merkuriusz Lek 2002; 13 (76) 308-311
  • 10 Wojtukiewicz MZ, Rucinska M, Zacharski LR. et al. Localization of blood coagulation factors in situ in pancreatic carcinoma. Thromb Haemost 2001; 86 (06) 1416-1420
  • 11 Wojtukiewicz MZ, Zacharski LR, Ruciñska M. et al. Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma. Thromb Haemost 1999; 82 (06) 1659-1662
  • 12 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Rev 2016; 35 (02) 213-233
  • 13 Alexander ET, Minton AR, Peters MC, van Ryn J, Gilmour SK. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget 2016; 7 (51) 85291-85305
  • 14 Hempel D, Sierko E, Wojtukiewicz MZ. Protease-activated receptors - biology and role in cancer. Postepy Hig Med Dosw 2016; 70 (00) 775-786
  • 15 D'Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P. Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol 2001; 158 (06) 2031-2041
  • 16 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Protease-activated receptors (PARs)–biology and role in cancer invasion and metastasis. Cancer Metastasis Rev 2015; 34 (04) 775-796
  • 17 Alturkistani A, Ghonem N, Power-Charnitsky VA, Pino-Figueroa A, Migliore MM. Inhibition of PAR-1 receptor signaling by enoxaparin reduces cell proliferation and migration in A549 cells. Anticancer Res 2019; 39 (10) 5297-5310
  • 18 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407 (6801) 258-264
  • 19 Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev 2004; 84 (02) 579-621
  • 20 Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC. Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 2004; 24 (01) 41-53
  • 21 Delekta PC, Apel IJ, Gu S. et al. Thrombin-dependent NF-kappaB activation and monocyte/endothelial adhesion are mediated by the CARMA3·Bcl10·MALT1 signalosome. J Biol Chem 2010; 285 (53) 41432-41442
  • 22 Gadepalli R, Kotla S, Heckle MR, Verma SK, Singh NK, Rao GN. Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration. J Biol Chem 2013; 288 (43) 30815-30831
  • 23 Chalmers CJ, Balmanno K, Hadfield K, Ley R, Cook SJ. Thrombin inhibits Bim (Bcl-2-interacting mediator of cell death) expression and prevents serum-withdrawal-induced apoptosis via protease-activated receptor 1. Biochem J 2003; 375 (Pt 1): 99-109
  • 24 Queiroz KC, Shi K, Duitman J. et al. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer 2014; 135 (10) 2294-2304
  • 25 Adams GN, Rosenfeldt L, Frederick M. et al. Colon cancer growth and dissemination relies upon Thrombin, Stromal PAR-1, and Fibrinogen. Cancer Res 2015; 75 (19) 4235-4243
  • 26 Fu XL, Duan W, Su CY. et al. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol Immunother 2017; 66 (12) 1597-1608
  • 27 Cheng Y, Li H, Deng Y. et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis 2018; 9 (04) 422
  • 28 Yang Y, Stang A, Schweickert PG. et al. Thrombin signaling promotes pancreatic adenocarcinoma through PAR-1-dependent immune evasion. Cancer Res 2019; 79 (13) 3417-3430
  • 29 Chen D, Carpenter A, Abrahams J. et al. Protease-activated receptor 1 activation is necessary for monocyte chemoattractant protein 1-dependent leukocyte recruitment in vivo. J Exp Med 2008; 205 (08) 1739-1746
  • 30 Ohno Y, Kitamura H, Takahashi N. et al. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells. Cancer Immunol Immunother 2016; 65 (02) 193-204
  • 31 Yu S, Liu C, Su K. et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 2007; 178 (11) 6867-6875
  • 32 Kastl SP, Speidl WS, Katsaros KM. et al. Thrombin induces the expression of oncostatin M via AP-1 activation in human macrophages: a link between coagulation and inflammation. Blood 2009; 114 (13) 2812-2818
  • 33 Solís-Martínez R, Cancino-Marentes M, Hernández-Flores G. et al. Regulation of immunophenotype modulation of monocytes-macrophages from M1 into M2 by prostate cancer cell-culture supernatant via transcription factor STAT3. Immunol Lett 2018; 196: 140-148
  • 34 Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 2014; 5: 514
  • 35 Shpacovitch VM, Feld M, Holzinger D. et al. Role of proteinase-activated receptor-2 in anti-bacterial and immunomodulatory effects of interferon-γ on human neutrophils and monocytes. Immunology 2011; 133 (03) 329-339
  • 36 Fields RC, Schoenecker JG, Hart JP, Hoffman MR, Pizzo SV, Lawson JH. Protease-activated receptor-2 signaling triggers dendritic cell development. Am J Pathol 2003; 162 (06) 1817-1822
  • 37 Omata N, Yasutomi M, Yamada A, Iwasaki H, Mayumi M, Ohshima Y. Monocyte chemoattractant protein-1 selectively inhibits the acquisition of CD40 ligand-dependent IL-12-producing capacity of monocyte-derived dendritic cells and modulates Th1 immune response. J Immunol 2002; 169 (09) 4861-4866
  • 38 Zhao L, Shao Q, Zhang Y. et al. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts. Sci Rep 2016; 6: 20409
  • 39 Kudo-Saito C, Shirako H, Ohike M, Tsukamoto N, Kawakami Y. CCL2 is critical for immunosuppression to promote cancer metastasis. Clin Exp Metastasis 2013; 30 (04) 393-405
  • 40 Chalmin F, Ladoire S, Mignot G. et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010; 120 (02) 457-471
  • 41 Spary LK, Salimu J, Webber JP, Clayton A, Mason MD, Tabi Z. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14+ PD-L1+ phenotype in prostate cancer. OncoImmunology 2014; 3 (09) e955331
  • 42 Zhang N, Zeng Y, Du W. et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 2016; 49 (04) 1360-1368
  • 43 Lu C, Talukder A, Savage NM, Singh N, Liu K. JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology 2017; 6 (03) e1291106
  • 44 Bu LL, Yu GT, Wu L. et al. STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J Dent Res 2017; 96 (09) 1027-1034
  • 45 Landsberg J, Kohlmeyer J, Renn M. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490 (7420) 412-416
  • 46 Mehta A, Kim YJ, Robert L. et al. immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov 2018; 8 (08) 935-943
  • 47 Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol 2013; 228 (07) 1404-1412
  • 48 Dwyer AR, Greenland EL, Pixley FJ. Promotion of tumor invasion by tumor-associated macrophages: the role of CSF-1-activated phosphatidylinositol 3 kinase and Src family kinase motility signaling. Cancers (Basel) 2017; 9 (06) 68
  • 49 Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014; 6 (03) 1670-1690
  • 50 Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007; 117 (05) 1175-1183
  • 51 Räihä MR, Puolakkainen PA. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: a review. Chronic Dis Transl Med 2018; 4 (03) 156-163
  • 52 Brigati C, Noonan DM, Albini A, Benelli R. Tumors and inflammatory infiltrates: friends or foes?. Clin Exp Metastasis 2002; 19 (03) 247-258
  • 53 Kalmes A, Vesti BR, Daum G, Abraham JA, Clowes AW. Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ Res 2000; 87 (02) 92-98
  • 54 Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140 (06) 883-899
  • 55 Finkernagel F, Reinartz S, Lieber S. et al. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization. Oncotarget 2016; 7 (46) 75339-75352
  • 56 Kuang DM, Zhao Q, Peng C. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009; 206 (06) 1327-1337
  • 57 Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 2017; 10 (01) 58
  • 58 Dąbrowska D, Jabłońska E, Garley M, Ratajczak-Wrona W, Iwaniuk A. New aspects of the biology of neutrophil extracellular traps. Scand J Immunol 2016; 84 (06) 317-322
  • 59 Berger-Achituv S, Brinkmann V, Abed UA. et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 2013; 4: 48
  • 60 Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun 2018; 10 (5-6) 414-421
  • 61 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18 (02) 134-147
  • 62 Gould TJ, Vu TT, Swystun LL. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984
  • 63 Yang S, Qi H, Kan K. et al. Neutrophil extracellular traps promote hypercoagulability in patients with sepsis. Shock 2017; 47 (02) 132-139
  • 64 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663) 1532-1535
  • 65 Jung HS, Gu J, Kim J-E, Nam Y, Song JW, Kim HK. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PLoS ONE 2019; 14 (04) e0216055
  • 66 Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost 2014; 40 (03) 277-283
  • 67 Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci 2014; 71 (21) 4179-4194
  • 68 Homa-Mlak I, Majdan A, Mlak R, Małecka-Massalska T. Metastatic potential of NET in neoplastic disease. Postepy Hig Med Dosw 2016; 70 (00) 887-895
  • 69 Yoshimoto M, Kagawa S, Kajioka H. et al. Dual antiplatelet therapy inhibits neutrophil extracellular traps to reduce liver micrometastases of intrahepatic cholangiocarcinoma. Cancer Lett 2023; 567: 216260
  • 70 Saffarzadeh M, Juenemann C, Queisser MA. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 2012; 7 (02) e32366
  • 71 Cedervall J, Hamidi A, Olsson A-K. Platelets, NETs and cancer. Thromb Res 2018; 164 (Suppl. 01) S148-S152
  • 72 Schedel F, Mayer-Hain S, Pappelbaum KI. et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment Cell Melanoma Res 2020; 33 (01) 63-73
  • 73 Monti M, De Rosa V, Iommelli F. et al. Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-binding integrins. Int J Mol Sci 2018; 19 (08) 2350
  • 74 Kanamaru R, Ohzawa H, Miyato H. et al. Neutrophil extracellular traps generated by low density neutrophils obtained from peritoneal lavage fluid mediate tumor cell growth and attachment. J Vis Exp 2018; 138 (138) 58201
  • 75 Cedervall J, Zhang Y, Huang H. et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res 2015; 75 (13) 2653-2662
  • 76 Albrengues J, Shields MA, Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018; 361 (6409) eaao4227
  • 77 Oklu R, Sheth RA, Wong KHK, Jahromi AH, Albadawi H. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagn Ther 2017; 7 (Suppl. 03) S140-S149
  • 78 Thålin C, Demers M, Blomgren B. et al. NETosis promotes cancer-associated arterial microthrombosis presenting as ischemic stroke with troponin elevation. Thromb Res 2016; 139: 56-64
  • 79 Tohme S, Yazdani HO, Al-Khafaji AB. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 2016; 76 (06) 1367-1380
  • 80 Yang C, Sun W, Cui W. et al. Procoagulant role of neutrophil extracellular traps in patients with gastric cancer. Int J Clin Exp Pathol 2015; 8 (11) 14075-14086
  • 81 Abdol Razak N, Elaskalani O, Metharom P. Pancreatic cancer-induced neutrophil extracellular traps: a potential contributor to cancer-associated thrombosis. Int J Mol Sci 2017; 18 (03) 487
  • 82 Boone BA, Murthy P, Miller-Ocuin J. et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer 2018; 18 (01) 678
  • 83 Richardson JJR, Hendrickse C, Gao-Smith F, Thickett DR. Neutrophil extracellular trap production in patients with colorectal cancer in vitro. Int J Inflamm 2017; 2017: 4915062
  • 84 Demers M, Krause DS, Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109 (32) 13076-13081
  • 85 Garley M, Dziemiańczyk-Pakieła D, Grubczak K. et al. Differences and similarities in the phenomenon of NETs formation in oral inflammation and in oral squamous cell carcinoma. J Cancer 2018; 9 (11) 1958-1965
  • 86 Podaza E, Sabbione F, Risnik D. et al. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother 2017; 66 (01) 77-89
  • 87 Li Y, Yang Y, Gan T. et al. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol 2019; 55 (01) 69-80
  • 88 Park J, Wysocki RW, Amoozgar Z. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 2016; 8 (361) 361ra138
  • 89 Grayson PC, Kaplan MJ. At the bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol 2016; 99 (02) 253-264
  • 90 Qiao J, Wu X, Luo Q. et al. NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica 2018; 103 (09) 1568-1576
  • 91 Ye X, Zuo D, Yu L. et al. ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 2017; 485 (02) 499-505
  • 92 Stakos DA, Kambas K, Konstantinidis T. et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 2015; 36 (22) 1405-1414
  • 93 Gupta AK, Joshi MB, Philippova M. et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584 (14) 3193-3197
  • 94 Zhao J, Xie X. Prediction of prognosis and immunotherapy response in breast cancer based on neutrophil extracellular traps-related classification. Front Mol Biosci 2023; 10: 1165776
  • 95 Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20 (05) 576-590
  • 96 de Gaetano G. Historical overview of the role of platelets in hemostasis and thrombosis. Haematologica 2001; 86 (04) 349-356
  • 97 Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2014; 34 (01) 54-62
  • 98 Kisucka J, Butterfield CE, Duda DG. et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A 2006; 103 (04) 855-860
  • 99 Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost 2004; 30 (01) 95-108
  • 100 Wojtukiewicz MZ, Sierko E, Hempel D, Tucker SC, Honn KV. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev 2017; 36 (02) 249-262
  • 101 Ma L, Perini R, McKnight W. et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A 2005; 102 (01) 216-220
  • 102 Italiano Jr JE, Richardson JL, Patel-Hett S. et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008; 111 (03) 1227-1233
  • 103 Benoy I, Salgado R, Colpaert C, Weytjens R, Vermeulen PB, Dirix LY. Serum interleukin 6, plasma VEGF, serum VEGF, and VEGF platelet load in breast cancer patients. Clin Breast Cancer 2002; 2 (04) 311-315
  • 104 Dymicka-Piekarska V, Guzinska-Ustymowicz K, Kuklinski A, Kemona H. Prognostic significance of adhesion molecules (sICAM-1, sVCAM-1) and VEGF in colorectal cancer patients. Thromb Res 2012; 129 (04) e47-e50
  • 105 George ML, Eccles SA, Tutton MG, Abulafi AM, Swift RI. Correlation of plasma and serum vascular endothelial growth factor levels with platelet count in colorectal cancer: clinical evidence of platelet scavenging?. Clin Cancer Res 2000; 6 (08) 3147-3152
  • 106 Kim SJ, Choi IK, Park KH. et al. Serum vascular endothelial growth factor per platelet count in hepatocellular carcinoma: correlations with clinical parameters and survival. Jpn J Clin Oncol 2004; 34 (04) 184-190
  • 107 Ferroni P, Palmirotta R, Spila A. et al. Prognostic value of carcinoembryonic antigen and vascular endothelial growth factor tumor tissue content in colorectal cancer. Oncology 2006; 71 (3-4): 176-184
  • 108 Mezouar S, Frère C, Darbousset R. et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thromb Res 2016; 139: 65-76
  • 109 Egan K, Cooke N, Kenny D. Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis 2014; 31 (06) 697-704
  • 110 Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999; 59 (06) 1295-1300
  • 111 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past?. Cancer Metastasis Rev 2017; 36 (02) 305-329
  • 112 Lowe KL, Navarro-Nunez L, Watson SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res 2012; 129 (Suppl. 01) S30-S37
  • 113 Jing Q, Yuan C, Zhou C. et al. Comprehensive analysis identifies CLEC1B as a potential prognostic biomarker in hepatocellular carcinoma. Cancer Cell Int 2023; 23 (01) 113
  • 114 Wojtukiewicz MZ, Tang DG, Ben-Josef E, Renaud C, Walz DA, Honn KV. Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Res 1995; 55 (03) 698-704
  • 115 McNicol A, Israels SJ. Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets 2008; 8 (02) 99-117
  • 116 Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11 (01) 125
  • 117 McCarty OJT, Mousa SA, Bray PF, Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 2000; 96 (05) 1789-1797
  • 118 Wang S, Li Z, Xu R. Human cancer and platelet interaction, a potential therapeutic target. Int J Mol Sci 2018; 19 (04) 19
  • 119 Placke T, Örgel M, Schaller M. et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 2012; 72 (02) 440-448
  • 120 Karachaliou N, Pilotto S, Bria E, Rosell R. Platelets and their role in cancer evolution and immune system. Transl Lung Cancer Res 2015; 4 (06) 713-720
  • 121 Qian BZ, Li J, Zhang H. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475 (7355) 222-225
  • 122 Seizer P, May AE. Platelets and matrix metalloproteinases. Thromb Haemost 2013; 110 (05) 903-909
  • 123 Yazdani HO, Roy E, Comerci AJ. et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res 2019; 79 (21) 5626-5639
  • 124 Maragoudakis ME, Tsopanoglou NE, Andriopoulou P, Maragoudakis MM. Effects of thrombin/thrombosis in angiogenesis and tumour progression. Matrix Biol 2000; 19 (04) 345-351
  • 125 Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006; 10 (05) 355-362
  • 126 Huang Z, Miao X, Luan Y. et al. PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. J Thromb Haemost 2015; 13 (03) 465-476
  • 127 Wojtukiewicz MZ, Tang DG, Nelson KK, Walz DA, Diglio CA, Honn KV. Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thromb Res 1992; 68 (03) 233-245
  • 128 Chiang HS, Yang RS, Huang TF. Thrombin enhances the adhesion and migration of human colon adenocarcinoma cells via increased beta 3-integrin expression on the tumour cell surface and their inhibition by the snake venom peptide, rhodostomin. Br J Cancer 1996; 73 (07) 902-908
  • 129 Kaufmann R, Junker U, Junker K. et al. The serine proteinase thrombin promotes migration of human renal carcinoma cells by a PKA-dependent mechanism. Cancer Lett 2002; 180 (02) 183-190
  • 130 Nierodzik ML, Klepfish A, Karpatkin S. Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thromb Haemost 1995; 74 (01) 282-290
  • 131 Wojtukiewicz MZ, Tang DG, Ciarelli JJ. et al. Thrombin increases the metastatic potential of tumor cells. Int J Cancer 1993; 54 (05) 793-806
  • 132 Even-Ram S, Uziely B, Cohen P. et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 1998; 4 (08) 909-914
  • 133 Radjabi AR, Sawada K, Jagadeeswaran S. et al. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. J Biol Chem 2008; 283 (05) 2822-2834
  • 134 Jolly MK, Boareto M, Huang B. et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol 2015; 5: 155
  • 135 Schiller H, Bartscht T, Arlt A. et al. Thrombin as a survival factor for cancer cells: thrombin activation in malignant effusions in vivo and inhibition of idarubicin-induced cell death in vitro. Int J Clin Pharmacol Ther 2002; 40 (08) 329-335
  • 136 Zhao B, Wu M, Hu Z. et al. Thrombin is a therapeutic target for non-small-cell lung cancer to inhibit vasculogenic mimicry formation. Signal Transduct Target Ther 2020; 5 (01) 117
  • 137 Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S. Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 2004; 104 (09) 2746-2751
  • 138 Danckwardt S, Hentze MW, Kulozik AE. Pathologies at the nexus of blood coagulation and inflammation: thrombin in hemostasis, cancer, and beyond. J Mol Med (Berl) 2013; 91 (11) 1257-1271
  • 139 Esumi N, Fan D, Fidler IJ. Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res 1991; 51 (17) 4549-4556
  • 140 Green D, Karpatkin S. Role of thrombin as a tumor growth factor. Cell Cycle 2010; 9 (04) 656-661
  • 141 Zhao B, Wu M, Hu Z. et al. A novel oncotherapy strategy: direct thrombin inhibitors suppress progression, dissemination and spontaneous metastasis in non-small cell lung cancer. Br J Pharmacol 2022; 179 (22) 5056-5073
  • 142 Alexander ET, Minton AR, Hayes CS, Goss A, Van Ryn J, Gilmour SK. Thrombin inhibition and cyclophosphamide synergistically block tumor progression and metastasis. Cancer Biol Ther 2015; 16 (12) 1802-1811
  • 143 Hua Y, Tang LL, Fewel ME. et al. Systemic use of argatroban reduces tumor mass, attenuates neurological deficits and prolongs survival time in rat glioma models. Acta Neurochir Suppl (Wien) 2005; 95: 403-406
  • 144 Hua Y, Keep RF, Schallert T, Hoff JT, Xi G. A thrombin inhibitor reduces brain edema, glioma mass and neurological deficits in a rat glioma model. Acta Neurochir Suppl (Wien) 2003; 86: 503-506
  • 145 Asanuma K, Wakabayashi H, Hayashi T. et al. Thrombin inhibitor, argatroban, prevents tumor cell migration and bone metastasis. Oncology 2004; 67 (02) 166-173
  • 146 Schulze EB, Hedley BD, Goodale D. et al. The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Res Treat 2008; 112 (02) 243-254
  • 147 Asanuma K, Wakabayashi H, Okamoto T. et al. The thrombin inhibitor, argatroban, inhibits breast cancer metastasis to bone. Breast Cancer 2013; 20 (03) 241-246
  • 148 Alexander ET, Minton AR, Peters MC, Van Ryn J, Gilmour SK. Dabigatran and cisplatin co-treatment enhances the antitumor efficacy of immune checkpoint blockade in a murine model of resistant ovarian cancer. J Cancer Res Ther Oncol 2020; 8: 1-12
  • 149 Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677-704
  • 150 Metelli A, Wu BX, Riesenberg B. et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci Transl Med 2020; 12 (525) 12
  • 151 Akl EA, Gunukula S, Barba M. et al. Parenteral anticoagulation in patients with cancer who have no therapeutic or prophylactic indication for anticoagulation. Cochrane Database Syst Rev 2011; 201 (04) CD006652
  • 152 Zwicker JI, Liebman HA, Bauer KA. et al. Prediction and prevention of thromboembolic events with enoxaparin in cancer patients with elevated tissue factor-bearing microparticles: a randomized-controlled phase II trial (the Microtec study). Br J Haematol 2013; 160 (04) 530-537
  • 153 Castle J, Blower E, Bundred NJ. et al. Rivaroxaban compared to no treatment in ER-negative stage I-III early breast cancer patients (the TIP Trial): study protocol for a phase II preoperative window-of-opportunity study design randomised controlled trial. Trials 2020; 21 (01) 749