Planta Med 2016; 82(16): 1431-1437
DOI: 10.1055/s-0042-108339
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Effect of Accessions and Environment Conditions on Coumarin, O-Coumaric and Kaurenoic Acids Levels of Mikania laevigata

Tânia da Silveira Agostini-Costa
1   Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
,
Ismael Silva Gomes
1   Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
,
Maira Christina Marques Fonseca
2   Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, Viçosa, MG, Brazil
,
Araci Molnar Alonso
3   Embrapa Cerrados, Planaltina, DF, Brazil
,
Rita de Cassia Alves Pereira
4   Embrapa Agroindústria Tropical, Fortaleza, CE, Brazil
,
Ilio Montanari Junior
5   Centro Pluridisciplinar de Pesquisas Químicas Biológicas e Agrícolas – CPQBA (UNICAMP), Campinas, SP, Brazil
,
Joseane Padilha da Silva
1   Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
,
Ana Maria Soares Pereira
6   Universidade de Ribeirão Preto – UNAERP, Ribeirão Preto, SP, Brazil
,
Dijalma Barbosa da Silva
1   Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
,
Roberto Fontes Vieira
1   Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
,
Ana Paula Artimonte Vaz
7   Embrapa Produtos e Mercado, Campinas, SP, Brazil
› Author Affiliations
Further Information

Publication History

received 25 August 2015
revised 26 April 2016

accepted 30 April 2016

Publication Date:
23 June 2016 (online)

Abstract

Coumarin, o-coumaric, and kaurenoic acid are bioactive compounds usually found in the leaves of Mikania laevigata. Genetic and environmental variations in the secondary metabolites of plants may have implications for their biological effects. Three different accessions of M. laevigata cultivated in four sites between the Equator and the Tropic of Capricorn in Brazil were evaluated aiming to present potential raw materials and discuss relationships among these three bioactive compounds. The results revealed effects of plant accessions and environmental factors and suggested two contrasting chemical phenotypes of M. laevigata. The first phenotype presented the highest levels of kaurenoic acid (2283 ± 316 mg/100 g) besides lower levels of coumarin (716 ± 61 mg/100 g), which was also stimulated by the environment and mild climate at the site nearest to the Tropic of Capricorn. The other phenotype presented the lowest levels of kaurenoic acid (137 ± 17 mg/100 g) besides higher levels of coumarin (1362 ± 108 mg/100 g), which was also stimulated by the environment and tropical climate at the site nearest to the Equatorial beach.

Supporting Information

 
  • References

  • 1 Rufatto LC, Gower A, Schwambach J, Moura S. Genus Mikania: chemical composition and phytotherapeutical activity. Rev Bras Farmacogn 2012; 22: 1384-1403
  • 2 Ritter M, Liro R, Roque N, Nakajima J, Souza-Buturi F, Oliveira C. Mikania: Lista de espécies da flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/jabot/listaBrasil/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=FB5388 Acessed May 14, 2015
  • 3 Bertolucci SK, Pereira AB, Pinto JE, de Aquino Ribeiro JA, de Oliveira AB, Braga FC. Development and validation of an rp-hplc method for quantification of cinnamic acid derivatives and kaurane-type diterpenes in Mikania laevigata and Mikania glomerata . Planta Med 2009; 75: 280-285
  • 4 Dos Santos S, Krueger C, Steil AA, Kreuger MR, Biavatti MW, Wisniewiski Junior A. LC characterization of guaco medicinal extracts, Mikania laevigata and M. glomerata, and their effects on allergic pneumonits. Planta Med 2006; 72: 679-684
  • 5 Bertolucci SK, Pereira AB, Pinto JE, Oliveira AB, Braga FC. Seasonal variation on the contents of coumarin and kaurane-type diterpenes in Mikania laevigata and M. glomerata leaves under different shade levels. Chem Biodivers 2013; 10: 288-295
  • 6 Bolina RC, Garcia EF, Duarte MGR. Estudo comparativo da composição química das espécies vegetais Mikania glomerata Sprengel e Mikania laevigata Schultz Bip. ex Baker. Rev Bras Farmacogn 2009; 19: 294-298
  • 7 Oliveira F, Alvarenga MA, Akisue G, Akisue MK. Isolamento e identificação de componentes químicos de Mikania glomerata Sprengel de Mikania laevigata Schultz Bip. ex Baker. Rev Farm Bioquim Univ São Paulo 1984; 2: 169-183
  • 8 Woehrlin F, Fry H, Abraham K, Preiss-Weigert A. Quantification of flavoring constituents in cinnamon: high variation of coumarin in Cassia bark from the German retail market and in authentic samples from Indonesia. J Agric Food Chem 2010; 58: 10568-10575
  • 9 Sproll C, Ruge W, Andlauer C, Godelmann R, Lachenmeier DW. HPLC analysis and safety assessment of coumarin in foods. Food Chem 2008; 109: 462-469
  • 10 Aguilar F, Astrup HN, Barlow S, Castle L, Crebelli R, Dekant W, Engel KH, Gontard N, Gott DM, Grilli S, Gürtler R, Larsen JC, Leclercq C, Leblanc JC, Malcata FX, Mennes W, Milana MR, Pratt I, Rietjens IMCM, Tobback PP, Toldrá F. Coumarin in flavourings and other food ingredients with flavouring properties: scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food (AFC). The EFSA J 2008; 793: 1-15
  • 11 Poulton JE, Mcree DE, Conn EE. Intracellular localization of two enzymes involved in coumarin biosynthesis in Melilotus alba . Plant Physiol 1980; 65: 171-175
  • 12 Leal L, Ferreira A, Bezerra G, Matos F, Viana G. Antinociceptive, anti-inflammatory and bronchodilator activities of Brazilian medicinal plants containing coumarin: a comparative study. J Ethnopharmacol 2000; 70: 151-159
  • 13 Moura RS, Costa S, Jansen J, Silva C, Lopes C, Bernardo-Filho M, Nascimento da Silva DNC, Portela BN, Rubenich L, Araújo RG, Carvalho L. Bronchodilator activity of Mikania glomerata Sprengel on human bronchi and guinea-pig trachea. J Pharm Pharmacol 2002; 54: 249-256
  • 14 Tirapelli CR, Ambrosio SR, Costa FB, Coutinho ST, Oliveira DCR, Oliveira AM. Analysis of the mechanisms underlying the vasorelaxant action of kaurenoic acid in the isolated rat aorta. Eur J Pharmacol 2004; 492: 233-241
  • 15 Tirapelli CR, Ambrosio SR, Costa FB, Oliveira AM. Inhibitory action of kaurenoic acid from Viguiera robusta (Asteraceae) on phenylephrine-induced rat carotid contraction. Fitoterapia 2002; 73: 56-62
  • 16 Okoye TC, Akah PA, Omeje EO, Okoye FBC, Nworu CS. Anticonvulsant effect of kaurenoic acid isolated from the root bark of Annona senegalensis . Pharmacol Biochem Behav 2013; 109: 38-43
  • 17 Mizokami SS, Arakawa NS, Ambrosio SR, Zarpelon AC, Casagrande R, Cunha TM, Ferreira SH, Cunha FQ, Verri Jr. WA. Kaurenoic acid from Sphagneticola trilobata inhibits inflammatory pain: effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod 2012; 75: 896-904
  • 18 Cotoras M, Folch C, Mendoza L. Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3-beta-hydroxy-kaurenoic acid. J Agric Food Chem 2004; 52: 2821-2826
  • 19 Padla EP, Solis LT, Ragasa CY. Antibacterial and antifungal properties of ent-kaurenoic acid from Smallanthus sonchifolius . Chin J Nat Med 2012; 10: 408-414
  • 20 Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol 2008; 59: 225-251
  • 21 Gasparetto JC, Campos FR, Budel JM, Pontarolo R. Mikania glomerata Spreng. e M. laevigata Sch. Bip. Ex Baker, Asteraceae: Estudos agronômicos, genéticos, morfoanatômicos, químicos, farmacológicos, toxicológicos e uso nos programas de fitoterapia do Brasil. Rev Bras Farmacogn 2010; 20: 627-640
  • 22 Amaral MPH, Vieira FP, Leite MN, Amaral LH, Pinheiro LC, Fonseca BG, Pereira MCS, Varejão EV. Determinação do teor de cumarina no xarope de guaco armazenado em diferentes temperaturas. Rev Bras Farmacogn 2009; 19: 607-611
  • 23 Lessa FCR, Grillo CHB, Pinto FE, Lorençon BB, Martins JDL, Bertolucci SKV, Pinto JEBP, Endringer DC. Efficacy of guaco mouthwashes (Mikania glomerata and Mikania laevigata) on the disinfection of toothbrushes. Rev Bras Farmacogn 2012; 22: 1330-1337
  • 24 Brasil. Formulário de Fitoterápicos da Farmacopeia Brasileira. Brasília: ANVISA; 2011: 125
  • 25 Talhaoui N, Gómez-Caravaca AM, Roldán C, León L, De la Rosa R, Fernández-Gutiérrez A, Segura-Carretero A. Chemometric analysis for the evaluation of phenolic patterns in olive leaves from six cultivars at different growth stages. J Agric Food Chem 2015; 63: 1722-1729
  • 26 Zhang L, Wang X, Guo J, Xia Q, Zhao G, Zhou H, Xie F. Metabolic profiling of chinese tobacco leaf of different geographical origins by GC-MS. J Agric Food Chem 2013; 61: 2597-2605
  • 27 Alvarenga FCR, Garcia EF, Bastos EMAF, Grandi TSM, Duarte MG. Avaliação da qualidade de amostras comerciais de folhas e tinturas de guaco. Rev Bras Farmacogn 2009; 19: 442-448
  • 28 Rocha L, Lucio EMA, França HS, Sharapin N. Mikania glomerata Spreng: Desenvolvimento de um produto fitoterápico. Rev Bras Farmacogn 2008; 18: 745-747
  • 29 Bari R, Jones JDG. Role of plant hormones in plant defence responses. Plant Mol Biol 2009; 69: 473-488
  • 30 Montanari Jr. I. Aspectos do cultivo comercial de guaco (Mikania glomerata Spreng. e Mikania laevigata Sch. Bip. ex Baker). Boletim Agroecológico 1999; 11: 1-19
  • 31 Instituto Nacional de Meteorologia (INMET). Banco de dados meteorológicos para ensino e pesquisa (BDMEP). Available at. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep Accessed on November 12, 2014
  • 32 Radünz LL, Melo EC, Barbosa LCA, Rocha RP, Berbert PA. Extraction yield of coumarin from guaco (Mikania glomerata Sprengel) leaves subjected to different drying temperatures. Rev Bras Plantas Med 2012; 14: 453-457
  • 33 Celeghini RMS, Vilegas JHY, Lanças FM. Extraction and quantitative HPLC analysis of coumarin in hydroalcoholic extracts of Mikania glomerata Spreng. (“guaco”) leaves. J Braz Chem Soc 2001; 12: 706-709