Exp Clin Endocrinol Diabetes 2011; 119(4): 214-217
DOI: 10.1055/s-0030-1269880
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Effect of Hyperthyroidism on Clearance and Secretion of Glucagon in Man

G. Dimitriadis1 , E. Hatziagelaki1 , P. Mitrou2 , V. Lambadiari1 , E. Maratou2 , A. E. Raptis1 , J. E. Gerich3 , S. A. Raptis1 , 2
  • 12nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University Medical School, Attikon University Hospital, Haidari, Greece
  • 2Hellenic National Center for Research, Prevention and Treatment of Diabetes Mellitus and its Complications, (H.N.D.C), Athens, Greece
  • 3Endocrinology and Metabolism Unit, University of Rochester School of Medicine, Rochester NY, USA
Further Information

Publication History

received 08.09.2010 first decision 26.10.2010

accepted 23.11.2010

Publication Date:
24 January 2011 (online)

Abstract

Objective: Glucagon has been proposed to contribute to the increased glucose production found in hyperthyroidism. However, fasting plasma glucagon levels are not increased in hyperthyroidism suggesting that the activity of the α-cell is normal. Nevertheless, an increase in the clearance rate of glucagon may mask increased glucagon secretion. This study was designed to examine the effects of hyperthyroidism on the kinetics of glucagon.

Design and methods: A primed-continuous infusion of glucagon was administered to 9 euthyroid and 9 hyperthyroid subjects at 3 sequential rates (1 200, 3 000 and 6 000 pg/kg/min, each given for 2 h). Arterialized blood was drawn at 15–30 min intervals for determination of glucagon.

Results: Fasting plasma glucagon levels were comparable in euthyroids (195±8 pg/ml) and hyperthyroids (231±16 pg/ml). During infusions (1 200, 3 000 and 6 000 pg/kg/min), plasma glucagon increased to 387±19, 624±44 and 977±51 pg/ml in euthyroids and to 348±23, 597±42 and 938±56 pg/ml in hyperthyroids respectively. At these infusion rates, metabolic clearance of glucagon (ml/kg/min) was 6.6±0.5, 7.4±0.6 and 7.9±0.5 in euthyroids and 12.6±2, 8.9±1 and 8.8±0.6 in hyperthyroids, respectively. Metabolic clearance of glucagon differed between hyperthyroids and euthyroids at 1 200 pg/kg/min infusion rate (p=0.001). The basal delivery rate of glucagon (ng/kg/min) was 1.3±0.1 in euthyroids and 2.9±0.6 in hyperthyroids (p=0.0005).

Conclusions: In hyperthyroidism, the secretion and metabolic clearance rates of glucagon are increased. These effects may explain the changes in plasma glucagon levels observed in hyperthyroidism and support the important role of glucagon in increasing endogenous glucose production in this condition.

References

  • 1 Bratusch-Mairain P, Gasic S, Waldhausl W. Triiodothyronine increases splachnic release and peripheral uptake of glucose in healthy human.  Am J Physiol. 1984;  257 E681-E687
  • 2 Casla A, Rovira A, Wells J. et al . Increased glucose transporter (GLUT4) protein expression in hyperthyroidism.  Biochem and Biophys Res Commun. 1990;  171 182-188
  • 3 Dimitriadis G, Baker B, Marsh H. et al . Effect of thyroid hormone excess on action, secretion and metabolism of insulin in humans.  Am J Physiol. 1985;  248 E593-E601
  • 4 Dimitriadis G, Mitrou P, Lambadiari V. et al . Insulin-stimulated rates of glucose uptake in muscle in hyperthyroidism: the importance of blood flow.  J Clin Endocrinol Metab. 2008;  93 2413-2415
  • 5 Dimitriadis G, Mitrou P, Lambadiari V. et al . Glucose and lipid fluxes in the adipose tissue after meal ingestion in hyperthyroidism.  J Clin Endocrinol Metab. 2006;  91 1112-1118
  • 6 Dimitriadis G, Newsholme EA. Integration of some biochemical and physiologic effects of insulin that may play a role in the control of blood glucose concentration. In: LeRoith D, Taylor S, Olefsky J (eds)Diabetes Mellitus, a fundamental and clinical text Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Lippincott Williams and Wilkins; 2004: 183-197
  • 7 Dimitriadis G, Parry-Billings M, Bevan S. et al . The effects of insulin on transport and metabolism of glucose in skeletal muscle from hyperthyroid and hypothyroid rats.  Eur J Clin Invest. 1997;  27 475-483
  • 8 Dimitriadis G, Raptis SA. Thyroid hormones and glucose intolerance.  Exp and Clin Endocrinol Diabetes. 2001;  109 (S 02) S225-S239
  • 9 Falloona G, Unger R. Glucagon. In: Jaffe B and Behrman H (eds)Methods of Hormone Radioimmunoassay New York: Academic; 1974: 317-323
  • 10 Fisher M, Sherwin R, Hendler R. et al . Kinetics of glucagon in man: effects of starvation.  Proc Natl Acad Sci (USA). 1976;  73 1735-1739
  • 11 Hales C, Hyams D. Plasma concentrations of glucose nonesterified fatty acids and insulin during oral glucose tolerance tests in thyrotoxicosis.  Lancet. 1964;  2 69-71
  • 12 Ingbar S, Woeber K. The Thyroid Gland. In: Williams R (ed) Textbook of Endocrinology Philadelphia, Toronto, London, Tokyo: WB Saunders; 1981: 117-147
  • 13 Kabadi U, Eisenstein A. Glucose intolerance in hyperthyroidism: Role of glucagon.  J Clin Endocrinol Metab. 1980a;  50 392-396
  • 14 Kabadi U, Eisenstein A. Impaired pancreatic a-cell response in hyperthyroidism.  J Clin Endocrinol Metab. 1980b;  51 478-482
  • 15 Klieverik LP, Janssen SF, van Riel A. et al . Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventicular nucleous to the liver.  Proc Natl Acad Sci (USA). 2009;  106 5966-5971
  • 16 McCulloch A, Nosadini R, Pernet A. et al . Glucose turnover and indices of recycling in thyrotoxicosis and primary thyroid failure.  Clin Sci. 1983;  64 41-47
  • 17 Mitrou P, Raptis SA, Dimitriadis G. Insulin action in hyperthyroidism: a focus on muscle and adipose tissue.  Endocr rev. 2010;  31 663-679
  • 18 Mokuno T, Uchimura K, Hayashi R. et al . Glucose transporter concentrations in hyper- and hypothyroid rat livers.  J Endocrinol. 1999;  160 285-289
  • 19 Okajima F, Ui M. Metabolism of glucose in hyper- and hypothyroid rats in-vivo.  Biochem J. 1979a;  182 565-575
  • 20 Okajima F, Ui M. Metabolism of glucose in hyper- and hypothyroid rats in-vivo: relation of catecholamine actions to thyroid activity in controlling glucose turnover.  Biochem J. 1979b;  182 585-592
  • 21 Riis ALD, Jorgensen JO, Ivarsen P. et al . Increased protein turnover and proteolysis is an early and primary feature of short-term experimental hyperthyroidism in healthy women.  J Clin Endocrinol Metab. 2008;  93 3999-4005
  • 22 Roti E, Braverman LE, Robuschi G. et al . Basal and glucose- and arginine-stimulated serum concentrations of insulin, c-peptide, and glucagon in hyperthyroid patients.  Metabolism. 1986;  35 337-342
  • 23 Sandler M, Robinson R, Rabin D. et al . The effect of thyroid hormones on gluconeogenesis and forearm metabolism in man.  J Clin Endocrinol Metab. 1983;  56 479-485
  • 24 Tosi F, Moghetti P, Castello R. et al . Early changes in plasma glucagon and growth hormone response to oral glucose in experimental hyperthyroidism.  Metabolism. 1996;  45 1029-1033
  • 25 Weinstein S, O’Boyle E, Fisher M. et al . Regulation of GLUT 2 glucose transporter expression in liver by thyroid hormone: Evidence for hormonal regulation of hepatic glucose transport system.  Endocrinology. 1994;  135 649-654
  • 26 Wennlund A, Felig P, Hagenfeldt L. et al . Hepatic glucose production and splachnic glucose exchange in hyperthyroidism.  J Clin Endocrinol Metab. 1986;  65 174-180
  • 27 Wolf E, Eisenstein A. Portal vein blood insulin and glucagon are increased in experimental hyperthyroidism.  Endocrinology. 1981;  108 2109-2113

Correspondence

Prof. G. DimitriadisMD, DPhil 

2 nd Department of Internal

Medicine, Research Institute

and Diabetes Center

Athens University Medical

School,“Attikon” University

Hospital

1 Rimini Street

GR-12462 Haidari

Greece

Phone: +30/210/583 2547

Fax: +30/210/583 2561

Email: gdimi@ath.forthnet.gr

Email: gdimitr@med.uoa.gr

    >