RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258482
A Photoirradiative Phase-Vanishing Method: Efficient Generation of HBr from Alkanes and Molecular Bromine and Its Use for Subsequent Radical Addition to Terminal Alkenes
Publikationsverlauf
Publikationsdatum:
09. Juli 2010 (online)

Abstract
A triphasic phase-vanishing (PV) system comprised of an alkane, perfluorohexanes, and bromine was successfully combined by photoirradiation to efficiently generate hydrogen bromide, which underwent radical addition with 1-alkenes in the hydrocarbon layer to afford terminal bromides in high yields.
Key words
fluorous solvent - phase-vanishing - photoirradiation - bromination - hydrogen bromide
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1 For a general review on fluorous
chemistry, see:
Handbook of Fluorous
Chemistry
Gladysz JA.Curran DP.Horváth IT. Wiley-VCH; Weinheim: 2004. - For reviews on fluorous solvents, see:
- 2a
Ryu I.Matsubara H.Emnet C.Gladysz JA.Takeuchi S.Nakamura Y.Curran DP. In Green Reaction Media in Organic SynthesisMikami K. Blackwell Publishing; Oxford: 2005. p.59Reference Ris Wihthout Link - 2b
Matsubara H.Ryu I. In Green Separation Processes: Fundamentals and ApplicationsAfonso CAM.Crespo JG. Wiley-VCH; Weinheim: 2005. p.219Reference Ris Wihthout Link - 3
Matsubara H.Yasuda S.Sugiyama H.Ryu I.Fujii Y.Kita K. Tetrahedron 2002, 58: 4071 - 4
Matsubara H.Maeda L.Ryu I. Chem. Lett. 2005, 34: 1548 - 5
Matsubara H.Maeda L.Sugiyama H.Ryu I. Synthesis 2007, 2901 - For reviews on the ‘Phase-Vanishing’ method, see:
- 6a
Ryu I.Matsubara H.Nakamura H.Curran DP. Chem. Rec. 2008, 8: 351Reference Ris Wihthout Link - 6b
Iskra J. Lett. Org. Chem. 2006, 3: 170Reference Ris Wihthout Link - 7
Ryu I.Matsubara H.Yasuda S.Nakamura H.Curran DP. J. Am. Chem. Soc. 2002, 124: 12946 - 8a
Nakamura H.Usui T.Kuroda H.Ryu I.Matsubara H.Yasuda S.Curran DP. Org. Lett. 2003, 5: 1167Reference Ris Wihthout Link - 8b
Matsubara H.Yasuda S.Ryu I. Synlett 2003, 247Reference Ris Wihthout Link - 8c
Rahman MT.Kamata N.Matsubara H.Ryu I. Synlett 2005, 2664Reference Ris Wihthout Link - 8d
Matsubara H.Tsukida M.Yasuda S.Ryu I. J. Fluorine Chem. 2008, 129: 951Reference Ris Wihthout Link - 9a
Jana NK.Verkade JG. Org. Lett. 2003, 5: 3787Reference Ris Wihthout Link - 9b
Iskra J.Stavber S.Zupan M. Chem. Commun. 2003, 2496Reference Ris Wihthout Link - 9c
Curran DP.Werner S. Org. Lett. 2004, 6: 1021Reference Ris Wihthout Link - 9d
Podgoršek A.Stavber S.Zupan M.Iskra J. Eur. J. Org. Chem. 2006, 483Reference Ris Wihthout Link - 9e
Windmon N.Dragojlovic V. Tetrahedron Lett. 2008, 49: 6543Reference Ris Wihthout Link - 9f
Windmon N.Dragojlovic V. Beilstein J. Org. Chem. 2008, 4: 29Reference Ris Wihthout Link - 9g
Ma K.Li S.Weiss RG. Org. Lett. 2008, 10: 4155Reference Ris Wihthout Link - 9h
van Zee NJ.Dragojlovic V. Org. Lett. 2009, 11: 3190Reference Ris Wihthout Link - 9i
Pels K.Dragojlovic V. Beilstein J. Org. Chem. 2009, 5: 75Reference Ris Wihthout Link - 11a
Brown HC.Lane CF. J. Am. Chem. Soc. 1970, 92: 7212Reference Ris Wihthout Link - 11b
Brown HC.Lane CF. Tetrahedron 1988, 44: 2763Reference Ris Wihthout Link - 11c
Falorni M.Lardicci L.Giacomelli G. J. Org. Chem. 1986, 51: 5291Reference Ris Wihthout Link - 11d
Brown HC.Lane CF. J. Am. Chem. Soc. 1970, 92: 6660Reference Ris Wihthout Link - 11e
Brown HC.Lane CF.
J. Chem. Soc. D: Chem. Commun. 1971, 521Reference Ris Wihthout Link - 11f
Lane CF.Brown HC. J. Organomet. Chem. 1971, 26: C51Reference Ris Wihthout Link - 11g
Tufariello JJ.Hovey MM. J. Chem. Soc. D: Chem. Commun. 1970, 372Reference Ris Wihthout Link - 11h
Kabalka GW.Sastry KAR.Hsu HC.Hylarides MD. J. Org. Chem. 1981, 46: 3113Reference Ris Wihthout Link - 11i
Maruoka K.Sano H.Shinoda K.Nakai S.Yamamoto H. J. Am. Chem. Soc. 1986, 108: 6036Reference Ris Wihthout Link - 11j
Tufariello JJ.Hovey MM. J. Am. Chem. Soc. 1970, 92: 3221Reference Ris Wihthout Link - 12a
Tamao K.Yoshida J.Takahashi M.Yamamoto H.Kakui T.Matsumoto H.Kurita A.Kumada M. J. Am. Chem. Soc. 1978, 100: 290Reference Ris Wihthout Link - 12b
Tamao K.Yoshida J.Yamamoto H.Kakui T.Matsumoto H.Takahashi M.Kurita A.Murata M.Kumada M. Organometallics 1982, 1: 355Reference Ris Wihthout Link - 13a
Hart DW.Schwartz J. J. Am. Chem. Soc. 1974, 96: 8115Reference Ris Wihthout Link - 13b
Tolstikov GA.Miftakhov MS.Valeev FA. Izv. Akad. Nauk SSSR, Ser. Khim. 1979, 2576Reference Ris Wihthout Link - 14a
Isagaga K.Tatsumi K.Otsuji Y. Chem. Lett. 1977, 1117Reference Ris Wihthout Link - 14b
Sato F.Sato S.Kodama H.Sato M. J. Organomet. Chem. 1977, 142: 71Reference Ris Wihthout Link - 14c
Lee H.-S.Kim C.-E. J. Korean Chem. Soc. 2003, 47: 297Reference Ris Wihthout Link - 14d
Lee H.-S.Lee G.-Y. J. Korean Chem. Soc. 2005, 49: 321Reference Ris Wihthout Link - 14e
Gavrilenko VV.Kolesov VS.Zakharkin LI. Izv. Akad. Nauk SSSR, Ser. Khim. 1985, 681Reference Ris Wihthout Link - 16 For an example of the use of HBr
to prepare key substrates for sequential radical reactions, see:
Zhang W.Hua Y.Geib SJ.Hoge G.Dowd P. Tetrahedron 1994, 50: 12579
References and Notes
¹H NMR of the concentrated reaction mixture in entry 6 of Table 1 shows peaks assigned to 2-bromo-2,4,4-trimethyl-pentane as the product, suggesting that hydrogen abstraction from isooctane would occur selectively at the tertiary position of isooctane.
15The reaction without fluorous phase gave an inferior result. For example, irradiation of a mixture of bromine (1.16 mmol) and isooctane (6 mL) with a 500 W Xe lamp for 30 min, followed by addition of 1-dodecene (1 mmol) at r.t., gave 1-bromododecane in 79% yield together with unreacted 1-dodecene (11%). In this procedure, probably some HBr generated would outgas during the reaction.
17
Typical Procedure
for Photoirradiative Phase
-
Vanishing Hydrogen Bromide Addition to Alkenes (Table
2, entry 2): FC-72 (6 mL) was placed in a Pyrex test tube (13 mm
Æ × 105
mm) to which bromine (2.1 mmol, 340 mg) was added slowly using a
glass pipette. Isooctane (1.5 mL) solution of 1-dodecene (2.0 mmol,
340 mg) was then added slowly, forming three layers. The test tube
was irradiated with a 500 W Xenon lamp for 2 h. The isooctane layer
was taken up with a pipette. Then, additional hexane (4 × 4
mL) was placed on the residual FC-72 layer, followed by decanting
off. The combined organic layer was washed with aq 10% Na2S2O3 (30
mL) and sat. brine (30 mL), dried over Na2SO4,
and concentrated. Purification by a short column chromatography
on silica gel with hexane gave 1-bromo-dodecane (480 mg, 96%).