Subscribe to RSS
DOI: 10.1055/s-0028-1087244
Ultrasound-Assisted Synthesis of Symmetrical Biaryls by Palladium-Catalyzed Homocoupling of Aryl n-Butyl Tellurides
Publication History
Publication Date:
24 November 2008 (online)

Abstract
An ultrasound-assisted synthesis of symmetrical biaryls with electron-withdrawing or -donating substituents is described and illustrated by palladium-catalyzed homocoupling reaction of aryl tellurides. This procedure offers easy access to biaryls in short reaction time, and the products are achieved in good to excellent yields.
Key words
homocoupling reaction - symmetrical biaryls - aryl n-butyl tellurides
- 1a
Nising CF.Schmid UK.Nieger M.Brase S. J. Org. Chem. 2004, 69: 6830Reference Ris Wihthout Link - 1b
Bringmann G.Ochse M.Schupp O.Tasler S. In Progress in the Chemistry of Organic Natural Products Vol. 82: Springer; Vienna: 2001.Reference Ris Wihthout Link - 1c
Bringmann G.Tasler S. Tetrahedron 2001, 57: 331Reference Ris Wihthout Link - 1d
Franck B.Gottschalk EM.Ohnsorge U.Huper F. Chem. Ber. 1966, 99: 3842Reference Ris Wihthout Link - 1e
Torssell KBG. Natural Product Chemistry Taylor and Francis; New York: 1997.Reference Ris Wihthout Link - 1f
Thomson RH. The Chemistry of Natural Products Blackie and Son; Glasgow: 1985.Reference Ris Wihthout Link - 2a
Nicolaou KC.Boddy NC.Brase S.Winssinger N. Angew. Chem. Int. Ed. 1999, 38: 2096 ; Angew. Chem. 1999, 111, 2230Reference Ris Wihthout Link - 2b
Birkenhager WH.de Leeuw PW. J. Hypertens. 1999, 17: 873Reference Ris Wihthout Link - 2c
Goa KL.Wagstaff AJ. Drugs 1996, 51: 820Reference Ris Wihthout Link - 2d
François G.Timperman G.Holenz J.Aké Assi L.Geuder T.Maes L.Dubois J.Hanocq M.Bringmann G. Ann. Trop. Med. Parasitol. 1996, 90: 115Reference Ris Wihthout Link - 3
Elsenbaumer RL.Shacklette LW. Handbook of Conducting Polymers Vol. 1:Skotheim TA. Marcel Dekker; New York: 1986. p.215Reference Ris Wihthout Link - 4a
Chemia DS.Zyss J. Nonlinear Optical Properties of Organic Molecules and Crystals Academic Press; New York: 1987.Reference Ris Wihthout Link - 4b
Kobayashi K. Nonlinear Optics of Organics and Semiconductors Springer; Tokyo: 1989.Reference Ris Wihthout Link - 5a
Noyori R. Chem. Soc. Rev. 1989, 18: 187Reference Ris Wihthout Link - 5b
Andersen NG.Maddaford SP.Keay BA. J. Org. Chem. 1996, 61: 9556Reference Ris Wihthout Link - 6
Mikes F.Boshart G. J. Chromatogr. 1978, 149: 455 - 7a
Yamamura K.Ono S.Tabushi I. Tetrahedron Lett. 1988, 29: 1797Reference Ris Wihthout Link - 7b
Yamamura K.Ono S.Ogoshi H.Masuda H.Kuroda Y. Synlett 1989, 18Reference Ris Wihthout Link - 8a
Huang X.Anderson KW.Zim D.Jiang L.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 6653Reference Ris Wihthout Link - 8b
Muci AR.Buchwald SL. Topics Org. Chem. 2001, 219: 131Reference Ris Wihthout Link - 9
Liang A. Drug Future 2002, 27: 987 - 10
Livingston JN.MacDougall M.Ladouceur G.Schoen W. Diabetes 1999, 48 (Suppl. 1): A199 - 11
Singh FV.Vatsyayan R.Roy U.Goel A. Bioorg. Med. Chem. Lett. 2006, 16: 2734 - 12
Cella R.Cunha RLOR.Reis AES.Pimenta DC.Klitzke CF.Stefani HA. J. Org. Chem. 2006, 71: 244 - 13a
Pier E.Yee JGK.Gladstone PL. Org. Lett. 2000, 2: 481Reference Ris Wihthout Link - 13b
Fanta PE. Synthesis 1974, 9Reference Ris Wihthout Link - 13c
Sainsbury M. Tetrahedron 1980, 36: 3327Reference Ris Wihthout Link - 13d
Lindley J. Tetrahedron 1984, 40: 1433Reference Ris Wihthout Link - 14a
Cravotto G.Beggiato M.Penoni A.Palmisano G.Tollari S.Lévêque J.-M.Bonrath W. Tetrahedron Lett. 2005, 46: 2267Reference Ris Wihthout Link - 14b
Yoshida H.Yamaryo Y.Ohshita J.Kunai A. Tetrahedron Lett. 2003, 44: 1541Reference Ris Wihthout Link - 14c
Punna S.Díaz DD.Finn MG. Synlett 2004, 2351Reference Ris Wihthout Link - 14d
Kabalka GW.Wang L. Tetrahedron Lett. 2002, 43: 3067Reference Ris Wihthout Link - 14e
Lei A.Zhang X. Tetrahedron Lett. 2002, 43: 2525Reference Ris Wihthout Link - 14f
Percec V.Bae J.-Y.Zhao M.Hill DH. J. Org. Chem. 1995, 60: 176Reference Ris Wihthout Link - 15a
Miyake Y.Wu M.Rahman MJ.Kuwatani Y.Iyoda M. J. Org. Chem. 2006, 71: 6110Reference Ris Wihthout Link - 15b
Xu X.Cheng D.Pei W. J. Org. Chem. 2006, 71: 6637Reference Ris Wihthout Link - 16
Xu Z.Mao J.Zhang Y. Catal. Commun. 2008, 9: 97 ; and references cited therein - 17
Cahiez G.Moyeux A.Buendia J.Duplais C. J. Am. Chem. Soc. 2007, 129: 13788 ; and references cited therein - 18
Robinson MK.Kochurina VS.Hanna JM. Tetrahedron Lett. 2007, 48: 7687 ; and references cited therein - 19a
Wong MS.Zhang XL. Tetrahedron Lett. 2001, 42: 4087Reference Ris Wihthout Link - 19b
Yamamoto Y.Suzuki R.Hattori K.Nishiyama H. Synlett 2006, 1027Reference Ris Wihthout Link - 20a
Uemura S.Wakasugi M.Okano M. J. Organomet. Chem. 1980, 194: 277Reference Ris Wihthout Link - 20b
Takahashi H.Ohe K.Uemura S.Sugita N. J. Organomet. Chem. 1988, 350: 227Reference Ris Wihthout Link - 20c
Hirabayashi K.Takeda Y.Shimizu T.Kamigata N. Synlett 2005, 2230Reference Ris Wihthout Link - For reviews, see:
- 21a
Petragnani N.Stefani HA. Tetrahedron 2005, 61: 1613Reference Ris Wihthout Link - 21b
Comasseto JV.Ling LW.Petragnani N.Stefani HA. Synthesis 1997, 373Reference Ris Wihthout Link - 21c
Zeni G.Braga AL.Stefani HA. Acc. Chem. Res. 2003, 36: 731Reference Ris Wihthout Link - 22a
Zeni G.Perin G.Cella R.Jacob RG.Braga AL.Silveira CC.Stefani HA. Synlett 2002, 975Reference Ris Wihthout Link - 22b
Braga AL.Lüdtke DS.Vargas F.Donato RK.Silveira CC.Stefani HA.Zeni G. Tetrahedron Lett. 2003, 44: 1779Reference Ris Wihthout Link - 22c
Nishibayashi Y.Cho C.-S.Ohe K.Uemura S. J. Organomet. Chem. 1996, 507: 197Reference Ris Wihthout Link - 22d
Nishibayashi Y.Cho C.-S.Ohe K.Uemura S. J. Organomet. Chem. 1996, 526: 335Reference Ris Wihthout Link - 23a
Margulis MA. High Energy Chem. 2004, 38: 135Reference Ris Wihthout Link - 23b
Mason TJ. Chem. Soc. Rev. 1997, 26: 443Reference Ris Wihthout Link
References
General Experimental
Procedure for Biaryls 2a-h and 4a-c
A
suspension of aryl telluride (1a, 0.135
g, 0.5 mmol), Pd(PPh3)4 (0.45 g, 8 mmol),
Na2CO3 (0.106 g, 1 mmol) and Ag2O
(0.116 g, 0.5 mmol) in MeOH (3 mL) was irradiated in a water bath
of an ultrasonic cleaner for 45 min. Then, the reaction was diluted
with EtOAc (30 mL). The organic layer was washed with sat. solution
of NH4Cl (2 × 10 mL) and H2O
(2 × 10 mL), dried over MgSO4,
and concentrated under vacuum. The crude product was purified by
flash silica column chromatography using hexane as eluent and characterized
as biphenyl 2a.
Compound 2a: white solid; mp 70-72 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.13-7.28
(m, 6 H, ArH), 7.45 (d, J = 7.2 Hz,
4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 122.6, 126.95,
130.11, 141.61. GC-MS (%): 154 (100), 153 (57), 152 (39),
76 (44).
Compound 2b: white solid;
mp 146-148 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.38 (d, J = 8.0 Hz,
4 H, ArH), 7.45 (d, J = 8.0
Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 128.00,
129.12, 133.52, 138.20. GC-MS (%): 222 (100), 152 (63),
93 (21), 75 (47).
Compound 2c:
white solid; mp 172-174 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 3.84 (s,
6 H, 2 OMe), 6.95 (d, J = 8.4
Hz, 4 H, ArH), 7.47 (d, J = 8.4
Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 54.89,
113.70, 127.28, 133.04, 158.24. GC-MS (%): 214 (100), 199
(87), 171 (21), 128 (16).
Compound 2d:
white solid; mp 122-124 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 2.33 (s,
6 H, 2 Me), 6.96 (d, J = 7.6
Hz, 4 H, ArH), 7.64 (d, J = 7.6
Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 20.93,
127.28, 129.94, 137.88, 138.76. GC-MS (%): 182 (68), 167
(100), 165 (45), 152 (19), 89 (21).
Compound 2e: white solid; mp 160-162 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.41 (d, J = 8.2 Hz,
4 H, ArH), 7.48 (d, J = 8.2
Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 128.23,
129.05, 133.76, 138.45. GC-MS (%): 312 (66), 152 (89),
76 (100).
Compound 2f: colorless
oil. ¹H NMR (300 MHz, CDCl3): δ = 2.08
(s, 6 H, 2 Me), 7.02 (t, J = 8.4
Hz, 2 H, ArH), 7.18 (t, J = 8.4
Hz, 4 H, ArH), 7.50 (d, J = 8.0
Hz, 2 H, ArH). ¹³C NMR (75.5
MHz, CDCl3): δ = 22.70, 124.74, 127.02, 127.10,
130.62, 132.13, 137.65. GC-MS (%): 182 (77), 167 (100),
166 (22), 165 (48).
Compound 2g:
colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 7.38
(t, J = 7.8
Hz, 2 H, ArH), 7.58 (d, J = 7.8
Hz, 2 H, ArH), 7.70 (d, J = 7.8
Hz, 2 H, ArH), 7.80 (s, 2 H, ArH). ¹³C NMR
(75.5 MHz, CDCl3): δ = 121.39, 122.71,
123.80, 130.34, 131.80, 134.95. GC-MS (%): 290 (100), 271
(24), 201 (28), 152 (19), 89 (21).
Compound 2h:
colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 2.02
(s, 6 H, 2 Me), 6.86-7.05 (m, 6 H, ArH). ¹³C
NMR (75.5 MHz, CDCl3): δ = 22.99, 114.48,
117.77, 118.89, 133.34, 139.93, 160.12, 163.37. GC-MS (%):
218 (92), 203 (100), 201 (52), 183 (60).
Compound 3a: white solid; mp 138-140 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.20 (t, J = 7.8 Hz,
2 H, ArH), 7.36-7.52 (m, 4 H, ArH), 7.66-7.76
(m, 6 H, ArH), 8.18 (d, J = 8.4
Hz, 2 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 122.94, 126.26,
126.78, 127.19, 127.42, 128.02, 128.40, 129.99, 132.09, 134.56.
GC-MS (%): 254 (90), 253 (100), 252 (80), 250 (25), 126
(98), 125 (47).
Compound 3b: white
solid; mp 180-182 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.44-7.58
(m, 6 H, ArH), 7.66-7.83 (m, 6 H, ArH), 8.00 (s, 2 H, ArH). ¹³C
NMR (75.5 MHz, CDCl3): δ = 119.37,
125.84, 126.45, 126.57, 127.42, 128.80, 129.15, 129.49, 131.39,
134.06. GC-MS (%): 254 (100), 252 (34), 126 (25). Compound 3c: white solid; mp >250 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 3.85 (s,
6 H, 2 OMe), 7.03 (s, 2 H, ArH), 7.10 (d, J = 9.0
Hz, 2 H, ArH), 7.44 (d, J = 9.0
Hz, 2 H, ArH), 7.50-7.60 (m, 4 H, ArH), 7.85 (s,
2 H, ArH). ¹³C NMR (75.5 MHz,
CDCl3): δ = 55.11, 105.56, 116.83, 119.57,
128.18, 128.29, 129.40, 129.45, 129.81, 132.85, 157.69. GC-MS (%):
314 (100), 299 (29), 271 (29), 228 (25), 157 (25).