Synlett 2024; 35(09): 993-996
DOI: 10.1055/a-2201-7197
cluster
Chemical Synthesis and Catalysis in Germany

Photocatalytic [2,3]-Sigmatropic Rearrangement Reactions of Ethyl Diazoacetate

Karabo M. Bopape
,
Aryan Shah
,
The authors acknowledge Deutsche Forschungsgemeinschaft for financial support. A.S. acknowledges the German Academic Exchange Service for a DAAD-WISE scholarship.


Abstract

We describe a photocatalytic reaction of diazo compounds with allyl sulfides under visible-light reaction conditions. In the presence of Ru(bpy)3Cl2 as a photocatalyst, a [2,3]-sigmatropic rearrangement reaction occurs that leads to the formation of homoallylic sulfides. This reaction proceeds in acetone as the solvent, which is unusual in carbene-transfer reactions, and it shows a broad substrate scope in the rearrangement reaction of allylic sulfides.

Supporting Information



Publication History

Received: 30 September 2023

Accepted after revision: 30 October 2023

Accepted Manuscript online:
30 October 2023

Article published online:
20 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 1b Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
    • 1c Lu H, Zhang XP. Chem. Soc. Rev. 2011; 40: 1899
    • 1d Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 1e Davies HM. L, Liao K. Nat. Rev. Chem. 2019; 3: 347
    • 1f Empel C, Jana S, Koenigs RM. Molecules 2020; 25: 880
    • 1g Wang J, Qiu D. Recent Developments of Diazo Compounds in Organic Synthesis. World Scientific; Singapore: 2021
    • 2a Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
    • 2b Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
    • 2c West TH, Spoehrle SS. M, Kasten K, Taylor JE. Smith A. D. ACS Catal. 2015; 5: 7446
    • 2d Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J. Tetrahedron 2017; 73: 4011
    • 2e Zhang X.-M, Tu Y.-Q, Zhang F.-M, Chen Z.-H, Wang S.-H. Chem. Soc. Rev. 2017; 46: 2272
    • 2f Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
    • 2g Empel C, Jana S, Koenigs RM. Synthesis 2021; 53: 4567
    • 3a Ciszewski ŁW, Rybicka-Jasińska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
    • 3b Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
    • 3c Durka J, Turkowska J, Gryko D. ACS Sustainable Chem. Eng. 2021; 9: 8895
    • 3d Chen Z, Xie Y, Xuan J. Eur. J. Org. Chem. 2022; e202201066
  • 4 Empel C, Pei C, Koenigs RM. Chem. Commun. 2022; 58: 2788
  • 5 Rybicka-Jasińska K, Shan W, Zawada K, Kadish KM, Gryko D. J. Am. Chem. Soc. 2016; 138: 15451
  • 6 Rybicka-Jasinska K, Ciszewski ŁW, Gryko D. Adv. Synth. Catal. 2016; 358: 1671
  • 7 Ye H.-B, Zhou X.-Y, Li L, He X.-K, Xuan J. Org. Lett. 2022; 24: 6018
  • 8 Ye H.-B, Bao Y.-P, Liu T.-Y, Wei T, Yang C, Liu Q.-A, Xuan J. Tetrahedron Chem 2023; 7: 100040
  • 9 Li W, Li S, Empel C, Koenigs RM, Zhou L. Angew. Chem. Int. Ed. 2023; 62: e202309947
  • 10 Empel C, Jana S, Ciszewski ŁW, Zawada K, Pei C, Gryko D, Koenigs RM. Chem. Eur. J. 2023; 29: e202300214
  • 11 Langletz T, Empel C, Jana S, Koenigs RM. Tetrahedron Chem 2022; 3: 100024
  • 12 Li F, Pei C, Koenigs RM. Angew. Chem. Int. Ed. 2022; 61: e202111892

    • For selected references on [2,3]-sigmatropic rearrangement reactions of light chalcogenonium ylides, see:
    • 13a Kirmse W, Kapps M. Chem. Ber. 1968; 101: 994
    • 13b Doyle MP, Tamblyn WH, Bagheri VJ. J. Org. Chem. 1981; 46: 5094
    • 13c McMillen DW, Varga N, Reed BA, King C. J. Org. Chem. 2000; 65: 2532
    • 13d Simmoneaux G, Galardon E, Paul-Roth C, Gulea M, Masson S. J. Organomet. Chem. 2001; 617–618: 360
    • 13e Liao M, Wang J. Green Chem. 2007; 9: 184
    • 13f Li Z, Boyarskikh V, Hansen JH, Autschbach J, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 15497
    • 13g Holzwarth MS, Alt I, Plietker B. Angew. Chem. Int. Ed. 2012; 51: 5351
    • 13h Xu X, Li C, Tao Z, Pan Y. Green Chem. 2017; 19: 1245
    • 13i Hock KJ, Mertens L, Hommelsheim R, Spitzner R, Koenigs RM. Chem. Commun. 2017; 53: 6577
    • 13j Dairo TO, Woo LK. Organometallics 2017; 36: 927
    • 13k Zhang Z, Sheng Z, Yu W, Zhang R, Chu W.-D, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970

      For sigmatropic rearrangement reactions with arynes, see:
    • 14a Tan J, Zheng T, Xu K, Liu C. Org. Biomol. Chem. 2017; 15: 4946
    • 14b Xu X.-B, Lin Z.-H, Liu Y, Guo J, He Y. Org. Biomol. Chem. 2017; 15: 2716
    • 14c Gaykar RN, George M, Guin A, Bhattacharjee S, Biju AT. Org. Lett. 2021; 23: 3447
    • 14d Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
  • 15 Hock KJ, Koenigs RM. Angew. Chem. Int. Ed. 2017; 56: 13566
  • 16 Photocatalytic Rearrangement Reactions: General Procedure The appropriate diazoalkane (0.2 mmol, 1.0 equiv) and allyl aryl sulfide (0.6 mmol, 3.0 equiv) were dissolved in acetone (2 mL), and the solution was irradiated with a module containing two blue LEDs (2 × 40 W, λ = 467 nm) overnight under Ar. When the reaction was complete, the solvent was removed under reduced pressure, and the product was purified by column chromatography (silica gel, hexane–EtOAc). Ethyl 2-(Phenylsulfanyl)pent-4-enoate (9a) Prepared according to the general procedure and purified by column chromatography [silica gel, hexane–EtOAc (80:1 to 60:1 to 40:1)] as a colorless oil; yield: 45.4 mg (96%). 1H NMR (600 MHz, CDCl3): δ = 7.33–7.23 (m, 2 H), 7.19–7.03 (m, 3 H), 5.66 (ddt, J = 27.3, 17.1, 10.2, 6.9 Hz, 1 H), 5.00–4.84 (m, 2 H), 3.93 (qd, J = 7.1, 1.7 Hz, 2 H), 3.52 (dd, J = 8.7, 6.4 Hz, 1 H), 2.49–2.41 (m, J = 14.4, 8.4, 7.0, 1.3 Hz, 1 H), 2.38–2.29 (m, 1 H), 0.98 (t, J = 7.1 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 171.6, 133.9, 133.1, 128.9, 128.0, 118.0, 61.1, 50.2, 35.8, 14.0. These data agree with those reported in the literature.13h