Synlett 2024; 35(04): 405-411
DOI: 10.1055/a-2112-9552
account
11th Singapore International Chemistry Conference (SICC-11)

Enantioselective Palladium-Catalyzed Suzuki–Miyaura Reactions Enabled by Ionic Ligand–Substrate Interactions

Ivan K. W. On
,
Ye Zhu
We gratefully acknowledge the support from the Ministry of Education - Singapore (academic research fund MOE2019-T2-2-139). I.K.W.O thanks the National University of Singapore for a research scholarship.


Abstract

Enzymes harness an array of noncovalent interactions to accomplish stereospecific transformations. Similarly, chemists have engineered chiral catalysts capable of eliciting noncovalent interactions for asymmetric synthesis. In this context, incorporating ionic groups into synthetic transition-metal catalysts represents a promising design element for enantioselective reactions by engaging electrostatic interactions between ligands and substrates. However, the nondirectional nature of ionic interactions presents a unique challenge in precise transmission of chirality. This account summarizes our recent work on developing phosphine ligands possessing nonligating ionic groups for exerting long-range stereocontrol in Suzuki–Miyaura reactions.

1 Introduction

2 Remote Quaternary Stereocenters

3 Mechanically Planar Chiral Rotaxanes

4 Atropo-enantioenriched Biaryls

5 Conclusions



Publikationsverlauf

Eingereicht: 16. Mai 2023

Angenommen nach Revision: 19. Juni 2023

Accepted Manuscript online:
19. Juni 2023

Artikel online veröffentlicht:
04. August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. ACS Catal. 2020; 10: 10672
    • 1b Trouvé J, Gramage-Doria R. Chem. Soc. Rev. 2021; 50: 3565
    • 1c Ye X, Tan C.-H. Chem. Sci. 2021; 12: 533
    • 1d Reek JN. H, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Chem. Rev. 2022; 122: 12308
  • 2 Zhou H.-X, Pang X. Chem. Rev. 2018; 118: 1691
  • 3 Sticke DF, Presta LG, Dill KA, Rose GD. J. Mol. Biol. 1992; 226: 1143
    • 4a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 4b Gillespie JE, Fanourakis A, Phipps RJ. J. Am. Chem. Soc. 2022; 144: 18195
  • 5 Hutskalov I, Linden A, Čorić I. J. Am. Chem. Soc. 2023; 145: 8291
    • 6a Okada Y, Minami T, Sasaki Y, Umezu Y, Yamaguchi M. Tetrahedron Lett. 1990; 31: 3905
    • 6b Okada Y, Minami T, Umezu Y, Nishikawa S, Mori R, Nakayama Y. Tetrahedron: Asymmetry 1991; 2: 667
  • 7 Sawamura M, Nagata H, Sakamoto H, Ito Y. J. Am. Chem. Soc. 1992; 114: 2586
    • 8a Chen W, McCormack PJ, Mohammed K, Mbafor W, Roberts SM, Whittall J. Angew. Chem. Int. Ed. 2007; 46: 4141
    • 8b Chen W, Spindler F, Pugin B, Nettekoven U. Angew. Chem. Int. Ed. 2013; 52: 8652
    • 9a Ohmatsu K, Imagawa N, Ooi T. Nat. Chem. 2014; 6: 47
    • 9b Ohmatsu K, Kawai S, Imagawa N, Ooi T. ACS Catal. 2014; 4: 4304
    • 10a Mechler M, Peters R. Angew. Chem. Int. Ed. 2015; 54: 10303
    • 10b Schmid J, Junge T, Lang J, Frey W, Peters R. Angew. Chem. Int. Ed. 2019; 58: 5447
    • 10c Willig F, Lang J, Hans AC, Ringenberg MR, Pfeffer D, Frey W, Peters R. J. Am. Chem. Soc. 2019; 141: 12029
    • 10d Miskov-Pajic V, Willig F, Wanner DM, Frey W, Peters R. Angew. Chem. Int. Ed. 2020; 59: 19873
    • 11a Chen C, Wang H, Zhang Z, Jin S, Wen S, Ji J, Chung LW, Dong X.-Q, Zhang X. Chem. Sci. 2016; 7: 6669
    • 11b Chen C, Wen S, Geng M, Jin S, Zhang Z, Dong X.-Q, Zhang X. Chem. Commun. 2017; 53: 9785
    • 11c Chen C, Zhang Z, Jin S, Fan X, Geng M, Zhou Y, Wen S, Wang X, Chung LW, Dong X.-Q, Zhang X. Angew. Chem. Int. Ed. 2017; 56: 6808
    • 11d Zhao Q, Chen C, Wen J, Dong X.-Q, Zhang X. Acc. Chem. Res. 2020; 53: 1905
    • 12a Kim B, Chinn AJ, Fandrick DR, Senanayake CH, Singer RA, Miller SJ. J. Am. Chem. Soc. 2016; 138: 7939
    • 12b Chinn AJ, Kim B, Kwon Y, Miller SJ. J. Am. Chem. Soc. 2017; 139: 18107
    • 12c Kwon Y, Chinn AJ, Kim B, Miller SJ. Angew. Chem. Int. Ed. 2018; 57: 6251
    • 13a Zhang Z, Smal V, Retailleau P, Voituriez A, Frison G, Marinetti A, Guinchard X. J. Am. Chem. Soc. 2020; 142: 3797
    • 13b Zhang Z, Sabat N, Frison G, Marinetti A, Guinchard X. ACS Catal. 2022; 12: 4046
  • 14 Pearce-Higgins R, Hogenhout LN, Docherty PJ, Whalley DM, Chuentragool P, Lee N, Lam NY. S, McGuire TM, Valette D, Phipps RJ. J. Am. Chem. Soc. 2022; 144: 15026
  • 15 Lou Y, Wei J, Li M, Zhu Y. J. Am. Chem. Soc. 2022; 144: 123
  • 16 Li M, Chia XL, Tian C, Zhu Y. Chem 2022; 8: 2843
  • 17 On IK. W, Hong W, Zhu Y. Chem. Catal. 2023; 3: 100523
  • 18 On IK. W, Hong W, Zhu Y. Tetrahedron Lett. 2023; 119: 154408
    • 19a Golding WA, Pearce-Higgins R, Phipps RJ. J. Am. Chem. Soc. 2018; 140: 13570
    • 19b Golding WA, Phipps RJ. Chem. Sci. 2020; 11: 3022
    • 19c Golding WA, Schmitt HL, Phipps RJ. J. Am. Chem. Soc. 2020; 142: 21891
  • 20 Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
    • 21a Maynard JR. J, Goldup SM. Chem 2020; 6: 1914
    • 21b Nakazono K, Takata T. Symmetry 2020; 12: 144
  • 22 Li M, Chia XL, Zhu Y. Chem. Commun. 2022; 58: 4719
  • 23 Hedouin G, Hazra S, Gallou F, Handa S. ACS Catal. 2022; 12: 4918
  • 24 Beutner G, Carrasquillo R, Geng P, Hsiao Y, Huang EC, Janey J, Katipally K, Kolotuchin S, La Porte T, Lee A, Lobben P, Lora-Gonzalez F, Mack B, Mudryk B, Qiu Y, Qian X, Ramirez A, Razler TM, Rosner T, Shi Z, Simmons E, Stevens J, Wang J, Wei C, Wisniewski SR, Zhu Y. Org. Lett. 2018; 20: 3736
    • 25a Saura-Sanmartin A. Asian J. Org. Chem. 2023; 12: e202200601
    • 25b Lassaletta JM. Chem. Catal. 2023; 3: 100554
    • 25c Olson MA. Chem. Catal. 2022; 2: 2818
    • 25d Wei J, Gandon V, Zhu Y. J. Am. Chem. Soc. 2023; 145: 16796
    • 26a van der Vegt NF, Haldrup K, Roke S, Zheng J, Lund M, Bakker HJ. Chem. Rev. 2016; 116: 7626
    • 26b Mahler J, Persson I. Inorg. Chem. 2012; 51: 425
  • 27 Peluso P, Chankvetadze B. Chem. Rev. 2022; 122: 13235
  • 28 Shaik S, Danovich D, Joy J, Wang Z, Stuyver T. J. Am. Chem. Soc. 2020; 142: 12551