Synlett 2024; 35(05): 513-520
DOI: 10.1055/a-2066-1227
account
Biomimetic Synthesis

Embracing the Imperfectness of Nature using Highly Reactive N-Acyl Azahexatrienes

Kuan Zheng
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Bingbing Zhang
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 101419, P. R. of China
,
Ran Hong
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 101419, P. R. of China
› Author Affiliations
Financial support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (2023267 to K.Z.) and the Science and Technology Commission of Shanghai Municipality (20XD1404700 to R.H.) is highly appreciated


Abstract

Incredible examples of controlling highly reactive functional groups to synthesize amazing architectures can be found in nature. N-Acyl azahexatriene, which is involved in biosynthesis, is clearly among them, despite the extremely limited number of examples disclosed in the literature. We explored the biomimetic synthesis of macrocarbocyclic natural products, chejuenolides A–C, as well as structural variants, to unveil the hidden stereochemical relationships between their biosynthesis and those of lankacidin antibiotics. This revealed the logic of the reaction pattern, which was likely influenced by catalytic promiscuity in nature.



Publication History

Received: 25 February 2023

Accepted after revision: 30 March 2023

Accepted Manuscript online:
30 March 2023

Article published online:
05 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Driggers EM, Hale SP, Lee J, Terrett NK. Nat. Rev. Drug Discovery 2008; 7: 608
    • 1b Marsault E, Peterson ML. J. Med. Chem. 2011; 54: 1961
    • 2a Mallinson J, Collins I. Future Med. Chem. 2012; 4: 1409
    • 2b Giordanetto F, Kihlberg J. J. Med. Chem. 2014; 57: 278
    • 2c Yñigez-Gutierrez AE, Bachmann BO. J. Med. Chem. 2019; 62: 8412
    • 3a Parenty A, Moreau X, Niel G, Campagne JM. Chem. Rev. 2013; 113: PR1-PR40
    • 3b Sengupta S, Metha G. Org. Biomol. Chem. 2020; 18: 1851
    • 3c Song Q, Kong L, Zhu L, Hong R, Huang S.-H. Chin. J. Chem. 2021; 39: 1022
    • 3d Bechtler C, Lamers C. RSC Med. Chem. 2021; 12: 1325

      For two recent examples:
    • 5a Caruso A, Martinie RJ, Bushin LB, Seyedsayamdost MR. J. Am. Chem. Soc. 2019; 141: 16610
    • 5b Caruso A, Seyedsayamdost MR. J. Org. Chem. 2021; 86: 11284
  • 6 Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Chem. Rev. 2015; 115: 8736
    • 7a Zheng K, Hong R. Acc. Chem. Res. 2021; 54: 3438
    • 7b Zhai L, Tang Y, Zhang Y, Huang S.-H, Zhu L, Hong R. Chem. Rec. 2022; 22: e202100197
    • 8a Gäumann E, Hütter R, Keller-Schierlein W, Neipp L, Prelog V, Zähner H. Helv. Chim. Acta 1960; 43: 601
    • 8b Kamiya K, Harada S, Wada Y, Nishikawa M, Kishi T. Tetrahedron Lett. 1969; 10: 2245
    • 8c Uramoto M, Ōtake N, Ogawa Y, Yonehara H, Marumo F, Saito Y. Tetrahedron Lett. 1969; 10: 2249
    • 9a Ootsu K, Matsumoto T. Gann 1973; 64: 481
    • 9b Ootsu K, Matsumoto T, Harada S, Kishi T. Cancer Chemother. Rep., Part 1 1975; 59: 919
    • 9c Ayoub AT, EI-Magd RM. A, Xiao J, Lewis CW, Tilli TM, Arakawa K, Nindita Y, Chan G, Sun L, Glover M, Klobukowski M, Tuszynski J. J. Med. Chem. 2016; 59: 9532
    • 10a Tsuchiya K, Yamazaki T, Takeuchi Y, Oishi T. J. Antibiot. 1971; 24: 29
    • 10b Harada S, Yamazaki T, Hatano K, Tsuchiya K, Kishi Y. J. Antibiot. 1973; 26: 647
    • 10c McFarland JW, Pirie DK, Retsema JA, English AR. Antimicrob. Agents Chemother. 1984; 25: 226
    • 10d Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M, Wekselman I, Zimmerman E, Xiong L, Klepacki D, Arakawa K, Kinashi H, Mankin AS, Yonath A. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 1983
  • 11 Zheng K, Sheng D, Hong R. J. Am. Chem. Soc. 2017; 139: 12939
  • 12 Zhang B, Zheng K, Hong R. ACS Cent. Sci. 2023; 9: 84
    • 13a Choi Y.-H, Sohn J.-H, Lee D, Kim JK, Kong IS, Ahn SC, Oh H. Tetrahedron Lett. 2008; 49: 7128
    • 13b Seo C, Oh H. Bull. Korean Chem. Soc. 2009; 30: 1181
    • 14a Kim BB, Oh H, Ng B.-G, Han J.-W. US 9394553 (B2) 2016
    • 14b Ng BG, Han J.-W, Lee DW, Choi GJ, Kim BS. J. Antibiot. 2018; 71: 495
  • 15 The name ‘chejuenolin’ is suggested here for a potentially undiscovered congener of chejuenolides bearing a lactone ring involved in the biosynthesis of chejuenolide A–C.
  • 16 Layer RW. Chem. Rev. 1963; 63: 489
  • 17 Monbaliu J.-M, Masschelein KG. R, Stevens CV. Chem. Soc. Rev. 2011; 40: 4708
    • 18a Cheng YS, Lupo AT, Fowler FW. J. Am. Chem. Soc. 1983; 105: 7696
    • 18b Kumagai T, Saito S, Ehara T. Tetrahedron Lett. 1991; 32: 6895
    • 18c Davies HM. L, Matasi JJ, Ahmed G. J. Org. Chem. 1996; 61: 2305
  • 19 Vargas DF, Larghi EL, Kaufman TS. Nat. Prod. Rep. 2019; 36: 354
    • 20a Thomas EJ, Williams DJ. J. Chem. Soc., Perkin Trans. 1 1987; 992
    • 20b Zheng K. Dissertation 2018
    • 21a Zheng K, Hong R. Org. Lett. 2020; 22: 3785
    • 21b Zheng K, Sheng D, Zhang B, Hong R. J. Org. Chem. 2020; 85: 13818
    • 21c Zheng K, Sheng D, Zhang B, Hong R. J. Org. Chem. 2021; 86: 10991
    • 22a Breuer SW, Bernath T, Ben-Ishai D. Tetrahedron Lett. 1966; 4569
    • 22b Breuer SW, Bernath T, Ben-Ishai D. Tetrahedron 1967; 23: 2869
  • 23 He S, Li P, Wang J, Zhang Y, Lu H, Shi L, Huang T, Zhang W, Ding L, He S, Liu L. Mar. Drugs 2022; 20: 269

    • For selected reviews, see:
    • 24a Scholz U, Winterfeldt E. Nat. Prod. Rep. 2000; 17: 349
    • 24b Bulger PG, Bagal SK, Marquez R. Nat. Prod. Rep. 2008; 25: 254
    • 24c Razzak M, De Brabander J. Nat. Chem. Biol. 2011; 7: 865
    • 24d Jürjens G, Kirschning A, Candito DA. Nat. Prod. Rep. 2015; 32: 723
  • 25 Armaly AM, DePorre YC, Groso EJ, Riehl PS, Schindler CS. Chem. Rev. 2015; 115: 9232
    • 26a Arakawa K, Sugino F, Kodama K, Ishii T, Kinashi H. Chem. Biol. 2005; 12: 249
    • 26b Dorival J, Risser F, Jacob C, Collin S, Dräger G, Paris C, Chagot B, Kirschning A, Gruez A, Weissman KJ. Nat. Commun. 2018; 9: e3998