Synlett 2002(5): 0814-0816
DOI: 10.1055/s-2002-25356
LETTER
© Georg Thieme Verlag Stuttgart · New York

Short Synthesis of a Taxane-AB-Fragment with a Spiro-Cyclopropyl Group

Jan C. Friese, Hans J. Schäfer*
Organisch-Chemisches Institut, Westfälische Wilhelms Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
Fax: +49(251)8336523; e-Mail: schafeh@uni-muenster.de;
Further Information

Publication History

Received 8 February 2002
Publication Date:
07 February 2007 (online)

Abstract

An efficient synthesis of the taxane-AB-fragment with a spiro-cyclopropyl group 2 was accomplished. The synthetic strategy toward this AB-fragment involved a cyclopropanation of hydroazulenone 1, a Grignard addition, and an acid catalyzed cyclopropylcarbinyl-rearrangement.

    References

  • For reported total syntheses of taxol:
  • 1a Nicolaou KC. Yang Z. Liu JJ. Ueno H. Nantermet PG. Guy RK. Claiborne CF. Renaud J. Couladouros EA. Paulvannan K. Sorensen EJ. Nature (London)  1994,  367:  630 
  • 1b Holton RA. Somoza C. Kim H.-B. Liang F. Biediger RJ. Boatman PD. Shindo M. Smith C. Kim S. Nadizadeh H. Suzuki Y. Tao C. Vu P. Tang S. Zhang P. Murthi KK. Gentile LN. Liu JH. J. Am. Chem. Soc.  1994,  116:  1597 
  • 1c Holton RA. Somoza C. Kim H.-B. Liang F. Biediger RJ. Boatman PD. Shindo M. Smith C. Kim S. Nadizadeh H. Suzuki Y. Tao C. Vu P. Tang S. Zhang P. Murthi KK. Gentile LN. Liu JH. J. Am. Chem. Soc.  1994,  116:  1599 
  • 1d Masters JJ. Link JT. Snyder LB. Young WB. Danishefsky SJ. Angew. Chem., Int. Ed. Engl.  1995,  34:  1723 ; Angew. Chem. 1995, 107, 1886
  • 1e Wender PA. Badham NF. Conway SP. Floreancig PE. Glass TE. Gränicher C. Houze JB. Jänichen J. Lee D. Marquess DG. McGrane PL. Meng W. Mucciaro TP. Mühlebach M. Natchus MG. Paulsen H. Rawlins DB. Satkofsky J. Shuker AJ. Sutton JC. Taylor RE. Tomooka K. J. Am. Chem. Soc.  1997,  119:  2755 
  • 1f Wender PA. Badham NF. Conway SP. Floreancig PE. Glass TE. Gränicher C. Houze JB. Jänichen J. Lee D. Marquess DG. McGrane PL. Meng W. Mucciaro TP. Mühlebach M. Natchus MG. Paulsen H. Rawlins DB. Satkofsky J. Shuker AJ. Sutton JC. Taylor RE. Tomooka K. J. Am. Chem. Soc.  1997,  119:  2757 
  • 1g Mukaiyama T. Shiina I. Iwadare H. Sakoh H. Tani Y. Hasegawa M. Saitoh K. Proc. Jpn. Acad. B  1997,  73(6):  95 
  • 1h Morihira K. Hara R. Kawahara S. Nishimori T. Nakamura N. Kusama H. Kuwajima I. J. Am. Chem. Soc.  1998,  120:  12980 
  • For reviews on taxane syntheses:
  • 2a Nicolaou KC. Dai W.-M. Guy RK. Angew. Chem., Int. Ed. Engl.  1994,  33:  15 ; Angew. Chem. 1994, 106, 38
  • 2b Boa AN. Jenkins PR. Lawrence NJ. Contemporary Organic Synthesis  1994,  1:  48 
  • For reviews on the construction of medium sized rings see:
  • 3a Petasis NA. Patane MA. Tetrahedron  1992,  48:  5757 
  • 3b Mehta G. Singh V. Chem. Rev.  1999,  99:  881 
  • 3c Yet L. Chem. Rev.  2000,  100:  2963 
  • 4a Kumar P. Rao AT. Saravanan K. Pandey B. Tetrahedron Lett.  1995,  36:  3397 
  • 4b Kumar P. Rao AT. Saravanan K. Pandey B. Tetrahedron Lett.  1995,  36:  3400 
  • 4c Cossy J. BouzBouz S. Tetrahedron Lett.  1997,  38:  1931 
  • 4d Nivlet A. Dechoux L. Le Gall T. Mioskowski C. Eur J. Org. Chem.  1999,  3251 
  • 4e Nivlet A. Le Guen V. Dechoux L. Gall TL. Mioskowski C. Tetrahedron Lett.  1998,  39:  2115 
  • 5 Thielemann W. Schäfer HJ. Kotila S. Tetrahedron  1995,  51:  12027 
  • 6a Chen S.-H. Huang S. Gao Q. Golik J. Farina V. J. Org. Chem.  1994,  59:  1475 
  • 6b Chen SH. Huang Q. Farina V. Tetrahedron Lett.  1994,  35:  41 
  • 8 Synthesis of 1: Kovats E. Fürst A. Günthard HH. Helv. Chim. Acta  1954,  34:  534 
  • 9 Trost BM. Bogdanowicz J. J. Am. Chem. Soc.  1973,  95:  5307 
  • 10 Lombardo L. Tetrahedron Lett.  1982,  23:  4293 
  • 11 G reenwald R. Chaykovsky M. Corey EJ. J. Org. Chem.  1963,  28:  1128 
  • 13 Shortridge RW. Craig RA. Greenlee KW. Derfer JM. Boord CE. J. Am. Chem. Soc.  1948,  70:  946 
  • 14 Stahl KJ. Hertzsch W. Musso H. Liebigs Ann. Chem.  1985,  7:  1474 
  • 15 Nakamura S. Shibasaki M. Tetrahedron Lett.  1994,  24:  4145 
  • 16a Gream GE. Pincombe CF. Aust. J. Chem.  1974,  27:  543 
  • 16b Fitjer L. Scheuermann HJ. Klages U. Wehlen D. Stephenson DS. Binsch G. Chem. Ber.  1986,  119:  1144 
  • 16c Kiwus R. Schwarz W. Rossnagel I. Musso H. Chem. Ber.  1987,  120:  435 
  • 17 Lang P. Musso H. Chem. Ber.  1987,  120:  439 
  • 18a Husstedt U. Schäfer HJ. Synthesis  1979,  964 
  • 18b Husstedt U. Schäfer HJ. Synthesis  1979,  966 
  • AM1 calculations reveal that the hydrogenation of 2 to 8 is exothermic by about 85 kJ/mol. Therefore, the reaction must be kinetically hindered for steric reasons. For a maximal overlap of the orbitals of the hydrogenation catalyst with the orbitals of the cyclopropane ring a facial approach is necessary. This is severely hindered by the 1-OH and the exo-CH3 group. This assumption is supported by the experimental result, in which the cyclopropane ring in 8 can be slowly opened after hydrogenation of the 1C-OH bond [Scheme 4, (c)]. For difficulties encountered in the hydrogenation of cyclopropane bonds attached to seven- or eight-membered rings see:
  • 20a Lei B. Fallis AG. J. Org. Chem.  1993,  58:  2186 
  • 20b Janini TE. Sampson P. J. Org. Chem.  1997,  62:  5069 
7

For a Scheme showing the competition between endo- and exocyclic ring opening see ref. [5]

12

rac-(1S)-8-Methylspiro[bicyclo[5.3.1]undecane-11,1′-cyclopropane]-7-en-1-ol(2): Compound 5 (42 mg, 0.20 mmol) was dissolved in tetrahydrofuran (4.5 mL) and 0.9 M aq trifluoracetic acid (2 mL) was added. The solution was stirred for 4 h at r.t. and was then diluted with diethyl ether (25 mL). The aq layer was extracted with diethyl ether (3 × 40 mL) and the combined organic layers were dried over MgSO4. After filtration of the mixture and evaporation of the solvent, the crude product was purified by flash chromatography (cyclohexane-ethyl acetate = 10:1) to afford 2 as a colorless oil. Yield: 36 mg (0.17 mmol, 87%) 2; colorless oil; Rf = 0.20 (cyclohexane-ethyl acetate = 10:1); FT-IR(neat): ν (cm-1) = 3455 (s), 3079 (w), 2925 (s), 2849 (m), 1450 (m), 1376 (w), 1331 (w), 1261 (w), 1143 (m), 1100 (w), 1042 (w), 1002 (m), 928 (w), 890 (w), 797 (w); 1H NMR (C6D6, 300.1 MHz): δ (ppm) = 0.07-0.18, 0.79-0.88, 0.93-1.06, 1.12-1.23 (4 m, 4 H, each 2 × 2-H, 3-H), 1.27-1.90 (m, 12 H, each 2 × 2′-H, 3′-H, 4′-H, 5′-H, 10′-H, each 1 × 6′-Ha, 9′-Ha), 1.62 (s, 3 H, 8′-CH3), 2.23-2.38 (m, 1 H, 6′-Hb), 2.42-2.59 (m, 1 H, 9′-Hb); 13C NMR (C6D6, 75.5 MHz): δ (ppm) = 8.3, 9.2 (t, C-2, C-3), 18.9 (q, 8′-CH3), 24.4 (t, C-4′), 28.6 (t, C-3′), 28.8 (t, C-5′), 27.5 (t, C-6′), 28.1 (s, C-11′), 30.0 (t, C-9′); 37.6 (t, C-10′), 43.7 (t, C-2′), 73.5 (q, C-1′), 131.3 (s, C-8′), 134.6 (s, C-7′), MS (GC/MS, 70 eV): m/z (%) = 206(38)[M+], 178(100) [M+ - C2H4], 163(38) [M+ - C2H4 - CH3], 149(26), 135(26) [M+ - C5H11], 121(24), 107(32) [M+ - C5H11 - CO], 93(22), 91(20), 79(16), 77(14), 67(10), 55(16), 41(12) [C3H5 +]; Anal. Calcd for C14H22O: C, 81.50; H, 10.75. Found: C, 81.19; H, 11.03.

19

Similar results as described in Scheme [4] (a)were achieved with Pt/C at elevated H2-pressure (150 bar) and extended reaction times. Both catalysts PtO2 or Pt/C did not lead to a hydrogenolytic ring opening in glacial acid. The activity of PtO2 further decreases, when the reaction temperature increased. At 60 °C, the activity becomes insufficient to hydrogenate the double bond. At 110 °C 2 decomposes to a complex mixture, that according to GC/MS does not contain 3. To prevent decomposition of 2 at higher temperatures the solvent acetic acid was exchanged for ethanol, ethyl acetate or cyclohexane. However 2 remained unchanged in these solvents even at 98 bar hydrogen pressure, 140 °C and large amounts of catalyst. With Raney-Nickel in methanol at conditions of room temperature to 180 °C and 88 bar H2 no conversion of 2 occurred. With palladium on activated carbon in methanol 2 was completely hydrogenated to 8 at r.t. and 1 bar H2, however, the cyclopropane ring of 8 was not hydrogenated even when the temperature was increased to 50 °C and the pressure increased to 80 bar H2 [for higher temperatures see Scheme [4] (c)].

21

Based on 48% conversion in the preparation of 6 (Scheme [2] ).