Synlett 1992; 1992(4): 255-265
DOI: 10.1055/s-1992-21333
account
© Georg Thieme Verlag, Rüdigerstr. 14, 70469 Stuttgart, Germany. All rights reserved. This journal, including all individual contributions and illustrations published therein, is legally protected by copyright for the duration of the copyright period. Any use, exploitation or commercialization outside the narrow limits set by copyright legislation, without the publisher's consent, is illegal and liable to criminal prosecution. This applies in particular to photostat reproduction, copying, cyclostyling, mimeographing or duplication of any kind, translating, preparation of microfilms, and electronic data processing and storage.

Asymmetric Catalysis for Carbonyl-Ene Reaction

Koichi Mikami* , Masahiro Terada, Satoshi Narisawa, Takeshi Nakai
  • *Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. März 2002 (online)

Asymmetric catalysts ("chemzymes") for abiological transformations are complementary to natural enzymes for biological transformations. Thus, the development of asymmetric catalysis by chiral metal complexes for abiogenetic-type reactions, carbon-carbon bond formations in particular, is the most challenging and formidable endeavor for synthetic organic chemists. Described herein are the recent developments of highly enantioselective catalysis by a chiral binaphthol-derived titanium complex for the carbonyl-ene reactions which involve carbonyl compounds as the enophiles. The striking features of the titanium catalysis are also disclosed which include the positive nonlinear effect (asymmetric amplification) and the asymmetric desymmetrization. 1. Introduction 2. Asymmetric Catalysis for Carbonyl-Ene Reactions 3. Asymmetric Catalytic Glyoxylate-Ene Reaction 3.1. Role of Molecular Sieves 3.2. Positive Nonlinear Effect (Asymmetric Amplification) 4. Asymmetric Catalytic Diels-Alder Reaction 4.1. Hetero-Diels-Alder Reaction with Glyoxylate 4.2. Diels-Alder Reaction 5. Asymmetric Desymmetrization 5.1. Asymmetric Catalytic Desymmetrization 5.2. Kinematic Resolution and Double Asymmetric Induction 6. Ene Cyclization 6.1. Asymmetric Catalytic Ene Cyclization 6.2. Desymmetrization in Ene Cyclization

    >