Synlett 2023; 34(13): 1634-1638
DOI: 10.1055/s-0042-1751431
letter

Diiodine–Triethylsilane System: Formation of N-Alkylsulfonamides from Aldehydes or Ketones and Sulfonamides

Jin Jiang
a   School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. of China
,
Siyan Feng
a   School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. of China
,
Jinming Chang
b   Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, P. R. of China
› Author Affiliations
This work was supported by the Open Project Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (CSPC202002) and Natural Science Foundation of Sichuan Province (2022NSFSC1241).


Abstract

Reductive amination has not been commonly used in the preparation of N-alkylsulfonamides because of the low nucleophilicity of sulfonamides. In this work, a protocol for the synthesis of N-alkylsulfonamides from aldehydes or ketones and sulfonamides was developed. Molecular iodine, triethylsilane, and ethyl acetate were used as the initiator, reductant, and solvent, respectively. The key role of triethyl(iodo)silane in the reaction was confirmed through control experiments.

Supporting Information



Publication History

Received: 28 December 2022

Accepted after revision: 20 February 2023

Article published online:
10 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Malwal SR, Sriram D, Yogeeswari P, Konkimalla VB, Chakrapani H. J. Med. Chem. 2012; 55: 553
  • 2 Busto E, Gotor-Fernández V, Gotor V. J. Org. Chem. 2012; 77: 4842
  • 3 Mais DE, Mohamadi F, Dubé GP, Kurtz WL, Brune KA, Utterback BG, Spees MM, Jakubowski JA. Eur. J. Med. Chem. 1991; 26: 821
  • 4 Gopalsamy A, Shi M, Stauffer B, Bahat R, Billiard J, Ponce-de-Leon H, Seestaller-Wehr L, Fukayama S, Mangine A, Moran R, Krishnamurthy G, Bodine P. J. Med. Chem. 2008; 51: 7670
  • 5 Papadopoulou MV, Bloomer WD, Rosenzweig HS, Chatelain E, Kaiser M, Wilkinson SR, McKenzie C, Ioset J.-R. J. Med. Chem. 2012; 55: 5554
  • 6 Yang P, Wang L, Feng R, Almehizia AA, Tong Q, Myint K.-Z, Ouyang Q, Alqarni MH, Wang L, Xie X.-Q. J. Med. Chem. 2013; 56: 2045
  • 7 Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
    • 8a Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857
    • 8b Irrgang T, Kempe R. Chem. Rev. 2020; 120: 9583
    • 8c Tian Y, Hu L, Wang Y.-Z, Zhang X, Yin Q. Org. Chem. Front. 2021; 8: 2328
    • 8d He J, Chen L, Liu S, Song K, Yang S, Riisager A. Green Chem. 2020; 22: 6714
    • 9a Alexander MD, Anderson RE, Sisko J, Weinreb SM. J. Org. Chem. 1990; 55: 2563
    • 9b Das BG, Ghorai P. Chem. Commun. 2012; 48: 8276
  • 10 Gellert BA, Kahlcke N, Feurer M, Roth S. Chem. Eur. J. 2011; 17: 12203
  • 11 Das BG, Ghorai P. Org. Biomol. Chem. 2013; 11: 4379
  • 13 Lluna-Galán C, Izquierdo-Aranda L, Adam R, Cabrero-Antonino JR. ChemSusChem 2021; 14: 3744
  • 15 Dolzhenko AV. Sustainable Chem. Pharm. 2020; 18: 100322
  • 16 Pesti J, Larson GL. Org. Process Res. Dev. 2016; 20: 1164
  • 17 Deans DR, Eaborn C. J. Chem. Soc. 1954; 3169
  • 18 N-Benzyl-4-methylbenzenesulfonamide (3aa); Typical Procedure Benzaldehyde (1a; 1.0 mmol, 1.0 equiv.), Et3SiH (1.5 mmol, 1.5 equiv.), TsNH2 (2a; 1.0 mmol, 1.0 equiv), EtOAc (2.0 mL), and I2 (0.5 mmol, 0.5 equiv) were successively added to a flask, and the resulting mixture was stirred at rt for 30 min. EtOAc (20.0 mL) and 0.5 M aq Na2S2O3 (10 mL) were added to the flask, and the organic layer was separated, washed with brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by flash column chromatography [silica gel (200‒300 mesh), PE–EtOAc (4:1)] to give a white solid; yield: 188.7 mg (72%); mp 117‒118 ℃. H NMR (600 MHz, CDCl3): δ = 7.75 (d, J = 8.4 Hz, 2 H), 7.30 (d, J = 8.4 Hz, 2 H), 7.28–7.23 (m, 3 H), 7.22‒7.16 (m, 2 H), 4.93‒4.80 (m, 1 H), 4.11 (d, J = 6.6 Hz, 2 H), 2.44 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 143.6, 136.9, 136.4, 129.9, 128.8, 128.0, 127.3, 47.4, 21.7.