Synlett 2023; 34(07): 777-792
DOI: 10.1055/s-0042-1751421
account
Chemical Synthesis and Catalysis in India

Synthetic Utility of the Vilsmeier–Haack Reagent in Organic Synthesis

Neena Neena
a   Department of Chemistry, Dyal Singh College, Karnal-132001, India
,
Vishwas Chaudhri
b   Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, NH-2, Mathura Road, Faridabad-121006, India
,
c   Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT)-Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India
,
Hideyasu China
e   Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
,
Toshifumi Dohi
d   Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technolog, 1266, Tamuracho, Nagahama-shi, Shiga 526-0829, Japan
,
Ravi Kumar
a   Department of Chemistry, Dyal Singh College, Karnal-132001, India
b   Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, NH-2, Mathura Road, Faridabad-121006, India
› Author Affiliations
R.K. is thankful to the Haryana State Council for Science, Innovation and Technology (HSCSIT), DST Haryana, for a research grant (HSCSIT/R&D/163) and the J. C. Bose University of Science & Technology, YMCA, for a seed grant (R&D/SG/2020-21/166). F.V.S. is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi (02/(0330)/17-EMR-II). T.D. acknowledges support from the Japan Society for the Promotion of Science (JSPS), KAKENHI (19K05466), the Japan Science and Technology Agency (JST), CREST (JPMJCR20R1) and the Ritsumeikan Global Innovation Research Organization (R-GIRO).


Abstract

The Vilsmeier–Haack reaction has historically been a topic of significant interest to organic chemists, and it continues to attract considerable attention. The reaction itself provides a facile route towards a large number of aromatic and heteroaromatic systems. The Vilsmeier–Haack reagent, generated from amides and halides, is found to be very important in organic synthesis. This account highlights recent developments in the synthetic utility of the Vilsmeier–Haack reagent.

1 Introduction

2 Formylation

3 Formylation and Chlorination

4 Formylation and Acetylation

5 Chlorination

6 ortho-Formylation

7 Miscellaneous

8 Conclusions



Publication History

Received: 18 September 2022

Accepted after revision: 18 January 2023

Article published online:
28 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Vilsmeier A. Chem.-Ztg. 1951; 75: 133
  • 2 Bayer O. In Houben-Weyl Methods of Organic Chemistry, Vol. 7/1E. Georg Thieme Verlag; Stuttgart: 1954: 255
  • 3 Brederec H, Gompper R, Vanchuh HG, Theiling G. Agnew. Chem. 1959; 71: 753
  • 4 Eilingsfeld H, Seefelder M, Weidinger H. Angew. Chem. 1960; 72: 830
  • 5 Minkin VI, Dorofeenko GN. Ospekhi Khim. 1960; 29: 1301 ; Chem. Abstr. 1961, 55, 12265h
  • 6 Oda R, Yamamoto K. Kagaku 1960; 15: 384 ; Chem. Abstr. 1960, 54, 24325c
  • 7 De Maheas MR. Bull. Soc. Chim. Fr. 1962; 30: 805
  • 8 Hafner K, Häfner KH, König C, Kreuder M, Ploss G, Schulz G, Vöpel KH. Angew. Chem. 1963; 2: 123
  • 9 Gore PH, Olah GA. Friedel–Crafts and Related Reactions, Vol. III. Wiley Interscience; New York: 1964: 64
  • 10 Jutz C. Chem. Lab. Betrieb 1968; 19: 289
  • 11 Ulrich H. The Chemistry of Imidoyl Halides . Plenum Press; New York: 1968
  • 12 Kuehne ME. Enamines, Synthesis, Structure and Reactions . Cook AG. Marcel Dekker, Inc; New York: 1969
  • 13 Seshadri S. J. Sci. Ind. Res. 1973; 32: 128
  • 14 Jutz C. Advances in Organic Chemistry: Methods and Results . Taylor EC, Bochme H, Vieche HG. Wiley Interscience; New York: 1976
  • 15 Meth-Cohn O, Tarnowski B. Cyclizations under Vilsmeier Conditions . In Advances in Heterocyclic Chemistry, Vol. 31. Katritzky AR. Academic Press; New York: 1982: 207
  • 16 Simchen G. In Houben-Weyl Methods of Organic Chemistry, Vol. E3. Falbe J. Thieme; Stuttgart: 1983. S2
  • 17 Marson CM. Tetrahedron 1992; 48: 3659
  • 18 Meth-Cohn O, Stanforth SP. Comprehensive Organic Synthesis . Trost BM, Fleming I, Heathcock CH. Pergamon; Oxford: 1991: 777
  • 19 Meth-Cohn O. Heterocycles 1993; 35: 539
  • 20 Tasneem Tasneem. Synlett 2003; 138
  • 21 Rajput AP, Girase PD. Int. J. Pharm. Chem. Biol. Sci. 2012; 3: 25
  • 22 Weike S, Weng Y, Jiang L, Yang Y, Zhao L, Chen Z, Li Z, Li J. Org. Prep. Proced. Int. 2010; 42: 503
  • 23 Inas S, Mahdi Zainab A, Sameaa J, Khammas Khammas, Majeed RA. Eurasian J. Biosci. 2020; 14: 973
  • 24 Vilsmeier A, Haack A. Rep. Ger. Chem. Soc., Ser. A and B 1927; 60: 119
  • 25 Filleux-Blanchard ML, Quemneur MT, Martin G. J. Chem. Commun. 1968; 83
  • 26 Martin GJ, Poignant S, Filleux ML, Quemeneur MT. Tetrahedron Lett. 1970; 11: 5061
  • 27 Abdelhamid IA, Shabban MR, Elwahy AH. M. Adv. Heterocycl. Chem. 2022; 136: 171
  • 28 King WJ, Nord FF. J. Org. Chem. 1948; 13: 635
  • 29 Clark BA. J, Parrick J, West PJ, Kelly AH. J. Chem. Soc. C 1970; 3: 498
  • 30 Jutz C, Muller W. Chem. Rep. 1967; 100: 1536
  • 31 Khan S, Shaheen M, Tabassum Z, Alam M. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 1183
  • 32 Rajput AP, Rajput SS. Int. J. Pharm. Pharm. Sci. 2011; 3: 346
  • 33 Mogilaiah K, Chandra AV, Srivani N, Praveena D. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2013; 52: 698
  • 34 Selvam TP, Kumar PV, Saravanan G, Prakash CR. J. Saudi Chem. Soc. 2014; 18: 1015
  • 35 Ivonin SP, Kurpil BB, Rusanov EB, Grygorenko OO, Volochnyuk DM. Tetrahedron Lett. 2014; 55: 2187
  • 36 Jupudi S, Talari S, Karunakaram D, Govindarajan R. Int. J. Res. Pharm. Chem. 2013; 3: 213
  • 37 Subhashini NJ. P, Reddy ChB, Kumar PA, Lingaiah B. J. Appl. Chem. 2015; 4: 323
  • 38 Popov A, Kobelevskaya VA, Larina LI, Rozentsveig IB. ARKIVOC 2019; (vi): 1
  • 39 Meesala R, Nagarajan R. Tetrahedron Lett. 2006; 47: 7557
  • 40 Shamsuzzaman Shamsuzzaman, Khanam H, Mashrai A, Siddiqui N. Tetrahedron Lett. 2013; 54: 874
  • 41 Damodiran M, Panneer Selvam N, Perumal PT. Tetrahedron Lett. 2009; 50: 5474
  • 42 Aneesa KC, Rajanna Y, Kumar A, Arifuddin M. Org. Chem. Int. 2012, 289023.
  • 43 Mphahlele MJ, Mmonwa MM. Org. Biomol. Chem. 2019; 17: 2204
  • 44 Roohi L, Afghan A, Baradarani MM. Curr. Chem. Lett. 2013; 2: 187
  • 45 Khezri M, Afghan A, Roohi L, Baradarani M. Org. Chem. Res. 2016; 2: 120
  • 46 Gao W, Jiang Y, Li Y, Li F, Yan Y. Chin. J. Chem. 2012; 30: 822
  • 47 Alegaon SG, Alagawadi KR. Eur. J. Chem. 2011; 2: 94
  • 48 Mikhaleva AI, Ivanov AV, Skital’tseva EV, Ushakov IA, Vasil’tsov AM, Trofimov BA. Synthesis 2009; 587
  • 49 Hartmann H. ARKIVOC 2012; (iii): 356
  • 50 Kantlehner W. Eur. J. Org. Chem. 2003; 2530 ; and references cited therein
  • 51 Nasrullaev AO, Turdibaev ZE, Elmuradov BZ, Yili A, Aisa HA, Shakhidoyatov KM. Chem. Nat. Compd. 2012; 48: 638
  • 52 Ortikov IS, Turdibaev ZÉ, Islamova ZI, Élmuradov BZ, Abdurazakov AS, Bektemirov AM, Osipova SO, Khushbaktova ZA, Syrov VN, Shakhidoyatov KM. Pharm. Chem. J. 2017; 51: 456
  • 53 Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
  • 54 Jiao L, Yu C, Li J, Wang Z, Wu M, Hao E. J. Org. Chem. 2009; 74: 7525
  • 55 Ali HI, Ashida N, Nagamatsua T. Bioorg. Med. Chem. 2007; 15: 6336
  • 56 Zhang Z, Kumar RK, Li G, Wu D, Bi X. Org. Lett. 2015; 17: 6190
  • 57 Anabha ER, Asokan CV. Synthesis 2006; 151
  • 58 Barman G, Ray JK. Tetrahedron Lett. 2010; 51: 297
  • 59 Bala R, Devi V, Singh P, Kaur N, Kaur P, Kumar A, Yadav AN, Singh K. Lett. Org. Chem. 2019; 16: 194
  • 60 Shaffer AR, Schmidt JA. Chem. Eur. J. 2009; 15: 2662
  • 61 Ashok D, Lakshmi BV, Ganesh A, Ravi S, Adam S, Murthy SD. S. Russ. J. Gen. Chem. 2014; 84: 2234
  • 62 Makhanya TR, Pitchai P, Gengan RM, Mohan PS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2016; 55: 517
  • 63 Tekale AS, Shaikh S. Int. J. Chem. Stud. 2017; 5: 1
  • 64 Mahalingam M, Mohan PS, Gayathri K, Gomathi R, Subhapriya P. J. Chem. Sci. 2013; 125: 1015
  • 65 Ruiz E, Rodríguez H, Coro J, Niebla V, Rodríguez A, Martínez-Alvarez R, Novoa de Armas H, Suárez M, Martín N. Ultrason. Sonochem. 2012; 19: 221
  • 66 Ba LA, Kirsch G, Castello J. ARKIVOC 2007; (x): 374
  • 67 Tang XY, Shi M. J. Org. Chem. 2008; 73: 8317
  • 68 Kale M, Mene D. Int. J. Pharm. Bio. Sci. 2013; 4: 503
  • 69 Aghera VK, Patel JP, Parsania PH. ARKIVOC 2008; (xii): 195
  • 70 Chornous VA, Bratenko MK, Vovk MV. Russ. J. Org. Chem. 2009; 45: 1210
  • 71 Zhang Z, Xue C, Liu X, Zhang Q, Liu Q. Tetrahedron 2011; 67: 7081
  • 72 Mohammed T, Khan AA, Iqbal SM. S, Begum T. Adv. Mater. Lett. 2020; 11: 20021476
  • 73 Liu Q, Che G, Yu H, Liu Y, Zhang J, Zhang Q, Dong D. J. Org. Chem. 2003; 68: 9148
  • 74 Liu Y, Zheng H, Xu D, Xu Z, Zhang Y. Org. Prep. Proced. Int. 2007; 39: 190
  • 75 Li J, Huo H, Guo R, Liu B, Li L, Dan W, Xiao X, Zhang J, Shi B. Eur. J. Med. Chem. 2017; 130: 1
  • 76 Srivastava V, Negi AS, Kumar JK, Gupta MM. Steroids 2006; 71: 632
  • 77 Kotlyar V, Shahar L, Lellouche JP. Mol. Diversity 2006; 10: 255
  • 78 Sathiyamoorthy S, Pitchai P, Jemima D, Gengan RM. Res. Rev. J. Chem. 2018; 7: 45
  • 79 Prakash O, Chaudhri V, Kinger M. Synth. Commun. 2005; 35: 2819
  • 80 Rajanna KC, Venkanna P, Kumar MS, Ramgopal S. Int. J. Org. Chem. 2012; 2: 336
  • 81 Rajanna KC, Kumar MS, Venkanna P, Ramgopal S, Venkateswarlu M. Int. J. Org. Chem. 2011; 1: 250
  • 82 McCallum T, Barriault L. J. Org. Chem. 2015; 80: 2874
  • 83 Kimura Y, Matsuura D. Int. J. Org. Chem. 2013; 3: 1
  • 84 Chakradhar A, Roopa R, Rajanna KC, Saiprakash PK. Synth. Commun. 2009; 39: 1817
  • 85 Ushijima S, Togo H. Synlett 2010; 1067
  • 86 Ushijima S, Moriyama K, Togo H. Tetrahedron 2002; 68: 4588