Synlett 2023; 34(09): 1049-1057
DOI: 10.1055/s-0042-1751404
letter

Regioselective Pd-Catalyzed Suzuki–Miyaura Borylation Reaction for the Dimerization Product of 6-Bromoimidazo[1,2-a]pyridine-2-carboxylate: Mechanistic Pathway, Cytotoxic and Tubercular Studies

Kartik N. Sanghavi
a   Department of Chemistry, School of Science, RK University, Rajkot-Bhavnagar Highway, Rajkot-360020, Gujarat, India
,
Dharmarajan Sriram
b   Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, ­Hyderabad-500078, India
,
Jyothi Kumari
b   Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, ­Hyderabad-500078, India
,
Khushal M. Kapadiya
a   Department of Chemistry, School of Science, RK University, Rajkot-Bhavnagar Highway, Rajkot-360020, Gujarat, India
› Institutsangaben


Abstract

In the pharmaceutical industry, boronic acid and esters play an important role in API-based synthesis. The most efficient way of preparing various active agents is palladium-catalyzed Suzuki–Miyaura borylation reactions. Herein, we report the formation of dimerization product [6,6′-biimidazo[1,2-a]pyridine]-2,2′-dicarboxamide derivatives 7aj from 6-bromoimidazo[1,2-a]pyridine-2-carboxylate by employing the same conditions. A regioselective borylation of ethyl 6-bromoimidazo[1,2-a]pyridine-2-carboxylate (3) was examined for the formation of ethyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)imidazo[1,2-a]pyridine-2-carboxylate (4a) but it was found to be directed towards the dimerization product 5. The nitrogen-rich system was incorporated into potential anti-cancer and anti-TB agents through acid amine coupling reactions between acid 6 and various amines (dialkyl/cyclic sec./tert.) to form the final adducts 7. Five derived scaffolds were identified as moderately active in TB activity against the H37Rv strain, while two compounds were found to be particularly potent in NCI-60 anti-cancer screening in nine cancer panels.

Supporting Information



Publikationsverlauf

Eingereicht: 08. November 2022

Angenommen nach Revision: 12. Dezember 2022

Artikel online veröffentlicht:
25. Januar 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Uygun Ö, Ertaş M, Ekizoğlu E, Bolay H, Özge A, Orhan EK, Çağatay AA, Baykan B. J. Headache Pain 2020; 21: 121
  • 2 Zaorsky NG, Churilla TM, Egleston BL, Fisher SG, Ridge JA, Horwitz EM, Meyer JE. Ann. Oncol. 2017; 28: 400
  • 3 Bhargava A, Bhargava M. J. Clin. Tuberc. Other Mycobact. Dis. 2020; 19: 100155
  • 4 Aminov RI. Front Microbiol. 2010; 1: 134
  • 5 Makhoba XH. Drug Des., Dev. Ther. 2020; 14: 3235
  • 6 Fair RJ, Yitzhak T. Perspect. Med. Chem. 2014; 6: 25
  • 7 Florindo HF, Kleiner R, Vaskovich-Koubi D. Nat. Nanotechnol. 2020; 15: 630
  • 8 Kapadiya KM, Kavadiya KM, Manvar PA, Khunt RC. Anti-Infect. Agents 2015; 13: 129
  • 9 Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
  • 10 Bhaskaruni SV. H. S, Maddila S, Gangu KK, Jonnalagadda SB. Arabian J. Chem. 2020; 13: 1142
  • 11 Kapadiya KM, Khunt RC. Lett. Drug Des. Discovery 2019; 16: 21
  • 12 Pawełczyk A, Sowa-Kasprzak K, Olender D, Zaprutko L. Int. J. Mol. Sci. 2018; 19: 1104
  • 13 Tong J, Zhan Y, Li J, Liu P, Sun P. Eur. J. Org. Chem. 2021; 4541
  • 14 Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
  • 15 Roopan SM, Patil SM, Palaniraja J. Res. Chem. Intermed. 2016; 42: 2749
  • 16 Lang DK, Kaur R, Arora R, Saini B, Arora S. Anticancer Agents Med. Chem. 2020; 20: 2150
  • 17 Arif M, Turgut K, Yakup S. Bioorg. Chem. 2021; 114: 105076
  • 18 Feng J, Geng W, Jiang H, Wu B. Biotechnol. Adv. 2022; 54: 107813
  • 19 Lu J, Yao B, Zhan D, Sun Z, Ji Y, Zhang X. Beilstein J. Org. Chem. 2022; 18: 1607
  • 20 Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
  • 21 Huang X, Zhang T. Tetrahedron Lett. 2009; 50: 208
  • 22 Jaung J, Youngsik J. Bull. Korean Chem. Soc. 2003; 24: 1565
  • 23 Yunxin Y, Mouad A, Abdallah H, Olivier P. Org. Biomol. Chem. 2021; 19: 3509
  • 24 Xie C, Zhang Y, Xu P. Synlett 2008; 3115
  • 25 Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
  • 26 Rogness DC, Markina NA, Waldo JP, Larock RC. J. Org. Chem. 2012; 77: 2743
  • 27 Reddy RS, Zheng S, Lagishetti C, You H, He Y. RSC Adv. 2016; 6: 68199
  • 28 You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
  • 29 Bagdi AK, Hajra A. Cross-Dehydrogenative Coupling in the Synthesis and Functionalization of Fused Imidazoheterocycles. In Heterocycles via Cross Dehydrogenative Coupling. Srivastava A, Jana CK. Springer; Singapore: 2019: 107-141
  • 30 Hendriks CM. M, Nürnberg P, Bolm C. Synthesis 2015; 47: 1190
  • 31 Ghosh M, Naskar A, Mitra S, Hajra A. Eur. J. Org. Chem. 2015; 715
  • 32 Lin Y, Li Y, Zeng Y, Tian B, Qu X, Yuan Q, Song Y. Front. Pharmacol. 2021; 632767
  • 33 Fried LE, Arbiser JL. Antioxid. Redox Signaling 2009; 11: 1139
  • 34 Garcia P, Lorenzo P, De Lera AR. Methods Enzymol. 2020; 637: 209
  • 35 Shih HC, Hwang TL, Chen HC, Kuo PC, Lee EJ, Lee KH, Wu TS. PLoS ONE 2013; 8: e59502
  • 36 Du F, Zhou Q, Liu D, Fang T, Shi Y, Du Y, Chen G. Synlett 2018; 29: 779
  • 37 Fair RJ, Yitzhak T. Perspect. Med. Chem. 2014; 6: 25
  • 38 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
  • 39 Andrade MA, Martins LM. D. R. S. Molecules 2020; 25: 5506
  • 40 Fu Z, Li X, Wang Z, Li Z, Liu X, Wu X, Zhao J, Ding X, Wan X, Zhong F, Wang D, Luo X, Chen K, Liu H, Wang J, Jiang H, Zheng M. Org. Chem. Front. 2020; 7: 2269
  • 41 Buskes M, Blanco MJ. Molecules 2020; 25: 3493
  • 42 Sanghavi KN, Dhuda GK, Kapadiya KM. Polycyclic Aromat. Compd. 2022; 42: 2
  • 43 Lee AL. Org. Biomol. Chem. 2016; 14: 5357
  • 44 Cartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
  • 45 Ji H, Cai J, Gan N. Chem. Cent. J. 2018; 12: 136
  • 46 Molander GA, Trice SL, Kennedy SM, Dreher SD, Tudge MT. J. Am. Chem. Soc. 2012; 134: 11667
  • 47 Miyaura N, Suzuki A. Main Group Met. Chem. 1987; 10: 295
  • 48 Moreno-Manas M, Perez R, Pleixats R. J. Org. Chem. 1996; 61: 2346
  • 49 Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
  • 50 Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
  • 51 Ji H, Wu L.-Y, Cai J.-H, Li G.-R, Gana N.-N, Wang Z.-H. RSC Adv. 2018; 8: 13643
  • 52 Gohel JN, Lunagariya KS, Kapadiya KM, Khunt RC. ChemistrySelect 2018; 3: 11657
  • 53 Pandya MK, Dholaria PV, Kapadiya KM. Russ. J. Org. Chem. 2020; 56: 1995
  • 54 Pandya M, Kapadiya K. Lett. Drug Des. Discovery 2021; 18: 701
  • 55 Gondaliya BL, Kapadiya KM. Polycyclic Aromat. Compd. 2023; 43: 686
  • 56 Dhuda GK, Kapadiya KM, Ladva P, Jivani A, Modha L. Anal. Chem. Lett. 2021; 11: 756
  • 57 Bhatt V, Samant DS, Pednekar S. Lett. Org. Chem. 2017; 14: 764
  • 58 Lilianna B, Anna P, Nina R, Iwona B. Pharmaceuticals 2022; 15: 92
  • 59 Mayer S, Keglevich P, Ábrányi-Balogh P, Szigetvári Á, Dékány M, Szántay CJr, Hazai L. Molecules 2020; 25: 888
  • 60 Panda P, Chakroborty S. ChemistrySelect 2020; 5: 10187
  • 61 Goel R, Luxamia V, Paul K. RSC Adv. 2015; 5: 37887
  • 62 Jeyachandran M, Ramesh P, Sriram D, Senthilkumar P, Yogeeswari P. Bioorg. Med. Chem. Lett. 2012; 22: 4807
  • 63 Variam UJ, Rudraraju SR, Janupally R, Saxena S, Jonnalagadda PS, Medapi B, Kulkarni P, Perumal Y, Dharmarajan S. J. Heterocycl. Chem. 2021; 59: 909
  • 64 Sharma S, Gelman E, Narayan C, Bhattacharjee D, Achar V, Humnabadkar V, Balasubramanian V, Ramachandran V, Dhar N, Dinesh N. Antimicrob. Agents Chemother. 2014; 58: 5801