Synlett 2023; 34(04): 364-368
DOI: 10.1055/s-0042-1751396
letter

A Convergent Synthesis of Tetracyclic Indole Compounds by a ­Palladium-Catalyzed Cross-Coupling and Tandem Cyclization ­Reaction

Yoshiki Ono
a   Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
,
Keiko Higuchi
a   Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
,
Masashi Yamaguchi
a   Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
,
Kumi Sugino
a   Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
,
Atsuo Nakazaki
b   Department of Chemistry and Biological Sciences, Iwate University, Ueda, Morioka, Iwate 020-8551, Japan
,
Masaatsu Adachi
c   Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
,
Toshio Nishikawa
a   Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
› Author Affiliations
Financial support was provided by a Grant-in-Aid for Scientific Research (B) (No. 19H02896) and a Grant-in-Aid for Scientific Research on Innovative Areas ‘Middle Molecular Strategy’ (No. 18H04400) from MEXT. Y.O. thanks the Mizutani Scholarship of Nagoya University.


Abstract

A new strategy for the convergent synthesis of the ABCD ring system of indole terpene alkaloids has been developed based on a Sonogashira coupling of an o-iodoaniline (the A ring) with an alkyne bearing the D ring. After a tandem palladium-catalyzed cyclization, the tetracyclic ABCD ring structure found in the terpene indole alkaloids was obtained in good yield.

Supporting Information



Publication History

Received: 20 October 2022

Accepted after revision: 21 November 2022

Article published online:
19 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 For a review of the structures and biological activities, see: Sings H, Singh S. Alkaloids (San Diego, CA, U. S.) 2003; 60: 51
  • 2 Steyn PS, Vleggaar R. Prog. Chem. Org. Nat. Prod. 1985; 48 DOI: 10.1007/978-3-7091-8815-6_1.
  • 3 Motoyama T, Hayashi T, Hirota H, Ueki M, Osada H. Chem. Biol. 2012; 19: 1611
    • 4a Uchida R, Kim Y.-P, Nagamitsu T, Tomoda H, Ōmura S. J. Antibiot. 2006; 59: 338
    • 4b Uchida R, Kim Y.-P, Namatame I, Tomoda H, Ōmura S. J. Antibiot. 2006; 59: 93

      For reviews, see:
    • 5a Zou Y, Smith AB. III. J. Antibiot. 2018; 71: 185
    • 5b Enomoto M. Biosci., Biotechnol., Biochem. 2021; 85: 13
    • 5c Schatz DJ, Kuenstner EJ, George DT, Pronin SV. Nat. Prod. Rep. 2022; 39: 946

      For recent total syntheses of indole terpene alkaloids, see:
    • 6a Godfrey NA, Schatz DJ, Pronin SV. J. Am. Chem. Soc. 2018; 140: 12770
    • 6b George DT, Kuenstner EJ, Pronin SV. J. Am. Chem. Soc. 2015; 137: 15410
    • 6c Sharpe RJ, Johnson JS. J. Am. Chem. Soc. 2015; 137: 4968
    • 6d Sharpe RJ, Johnson JS. J. Org. Chem. 2015; 80: 9740
    • 6e Kim DE, Zweig JE, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 1479
    • 6f Guo L.-D, Xu Z, Tong R. Angew. Chem. Int. Ed. 2022; 61: e202115384
    • 6g Hauser N, Imhof MA, Eichenberger SS, Kündig T, Carreira EM. Angew. Chem. Int. Ed. 2022; 61: e202112838
    • 7a Gassman PG, Van Bergen TJ, Gilbert DP, Cue BW. Jr. J. Am. Chem. Soc. 1974; 96: 5495
    • 7b Smith AB. III, Mewshaw RE. J. Am. Chem. Soc. 1985; 107: 1769
    • 7c Mewshaw RE, Taylor MD, Smith AB. III. J. Org. Chem. 1989; 54: 3449
    • 8a Smith AB. III, Visnick M. Tetrahedron Lett. 1985; 26: 3757
    • 8b Smith AB. III, Visnick M, Haseltine JN, Sprengeler PA. Tetrahedron 1986; 42: 2957
    • 9a Smith AB. III, Kanoh N, Ishiyama H, Minakawa N, Rainier JD, Hartz RA, Cho YS. Cui H, Moser WH. J. Am. Chem. Soc. 2000; 122: 11254
    • 9b Smith AB. III, Kanoh N, Ishiyama H, Hartz RA. J. Am. Chem. Soc. 2003; 125: 8228
    • 9c Smith AB. III, Cui H. Org. Lett. 2003; 5: 587
    • 9d Smith AB. III, Davulcu AH, Kürti L. Org. Lett. 2006; 8: 1665
    • 10a Barluenga J, Valdés C. Chem. Commun. 2005; 4891
    • 10b Barluenga J, Fernández MA, Aznar F, Valdés C. Chem. Eur. J. 2005; 11: 2276
    • 11a Zou Y, Melvin JE, Gonzales SS, Spafford MJ, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 7095
    • 11b Zou Y, Li X, Yang Y, Berrit S, Melvin J, Gonzales SS, Spafford MJ, Smith AB. III. J. Am. Chem. Soc. 2018; 140: 9502
    • 12a Enomoto M, Morita A, Kuwahara S. Angew. Chem. Int. Ed. 2012; 51: 12833
    • 12b Asamuma A, Enomoto M, Nagasawa T, Kuwahara S. Tetrahedron Lett. 2013; 54: 4561
    • 12c Teranishi T, Muraoka T, Enomoto M, Kuwahara S. Biosci., Biotechnol., ­Biochem. 2015; 79: 11
    • 12d Muraoka T, Enomoto M, Teranishi T, Ogura Y, Kuwahara S. Tetrahedron Lett. 2018; 59: 4107

      Other recent studies on the indole terpene alkaloid:
    • 13a Churruca F, Fousteris M, Ishikawa Y, Rekwski M, Housou C, Surrey T, Giannis A. Org. Lett. 2010; 12: 2096
    • 13b Okano K, Yoshii Y, Tokuyama H. Heterocycles 2012; 84: 1325
    • 13c Feldman KS, Gonzalez IY, Glinkerman CM. J. Am. Chem. Soc. 2014; 136: 15138
    • 13d Hayakawa I, Matsumaru N, Sakakura A. J. Org. Chem. 2021; 86: 9802
    • 14a Sugino K, Nakazaki A, Isobe M, Nishikawa T. Synlett 2011; 647
    • 14b Adachi M, Higuchi K, Thasana N, Yamada H, Nishikawa T. Org. Lett. 2012; 14: 114
    • 14c Ono Y, Nakazaki A, Ueki K, Higuchi K, Sriphana U, Adachi M, Nishikawa T. J. Org. Chem. 2019; 84: 9750

      For reviews of indole synthesis, see:
    • 15a Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
    • 15b Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 15c Sakamoto T, Kondo Y, Yamakawa H. Heterocycles 1988; 27: 2225
    • 15d Hegedus LS. Angew. Chem. Int. Ed. 1988; 27: 1113
    • 16a Sakamoto T, Kondo Y, Iwashita S, Yamakawa H. Chem. Pharm. Bull. 1987; 35: 1823
    • 16b Yasuhara A, Kanamori Y, Kaneko M, Numata A, Kondo Y, Sakamoto T. J. Chem. Soc., Perkin Trans. 1 1999; 529
    • 16c Kondo Y, Kojima S, Sakamoto T. J. Org. Chem. 1997; 62: 6507
    • 16d Kogyoku S, Ogasawara K. Chem. Lett. 1995; 289
    • 16e Chen Z, Shi X.-X, Ge D.-Q, Ge D.-Q, Jiang Z.-Z, Jin Q.-Q, Jiang H.-J, Wu J.-S. Chin. Chem. Lett. 2017; 28: 231
    • 17a Iritani K, Matsubara S, Utimoto K. Tetrahedron Lett. 1988; 29: 1799
    • 17b Arcadi A, Cacchi S, Marinelli F. Tetrahedron Lett. 1992; 33: 3915
    • 17c Arcadi A, Cacchi S, Carnicelli V, Marinelli F. Tetrahedron 1994; 50: 437
    • 17d Cacchi S, Fabrizi G, Marinelli F, Moro L, Pace P. Synlett 1997; 1363
    • 17e Yasuhara A, Kaneko M, Sakamoto T. Heterocycles 1998; 48: 1793
    • 17f Shen Z, Lu X. Tetrahedron 2006; 62: 10896
    • 17g Han X, Lu X. Org. Lett. 2010; 12: 3336
    • 17h Xia G, Han X, Lu X. Org. Lett. 2014; 16: 2058
    • 17i Han X, Lu X. Synlett 2018; 29: 2461
  • 18 Hiroya K, Itoh S, Sakamoto T. J. Org. Chem. 2004; 69: 1126
  • 19 Most of the substrates for the Pd-catalyzed tandem reactions of o-alkynylanilines were N-tosyl derivatives, probably due to the increased the acidity of NHTs resulting in promotion of the cyclization through aminopalladation; see ref. 17.
  • 20 Solladie G, Girardin A, Lang G. J. Org. Chem. 1989; 54: 2620

    • Similar Diel–Alder reactions have been reported; see:
    • 21a Eschenmoser A, Winter CE. Science 1977; 196: 1410
    • 21b Hu Q.-Y, Zhou G, Corey EJ. J. Am. Chem. Soc. 2004; 126: 13708
  • 22 This substrate was synthesized in a similar manner to that of 11. For the details, see the Supporting Information.
  • 23 The structure was determined by MS and 2D NMR spectral analyses. The key correlations and coupling constants of the NMR spectra are shown in Figure 2.
  • 24 Because Pd(Ph3P)4 catalyzed the cascade reaction, a mechanism involving a Pd(0) catalyst cannot be excluded (Scheme 6). In this, the bromide undergoes oxidative addition to Pd(0), and the resulting Pd(II) species 27 intramolecularly coordinates to the alkyne moiety; this is followed by aminopalladation. Reductive elimination of the resulting palladacycle 28 provides the product 2. A similar mechanism was proposed in ref. 17(c).
  • 25 The same reaction with PdCl2(PhCN)2 as a catalyst gave a comparable yield of 13. However, as the removal of PhCN was laborious, PdCl2(MeCN)2 was selected as the optimal catalyst.
  • 26 In the absence of a Pd catalyst, the reaction did not proceed under the same conditions.
  • 27 N-Tosylate 14 PdCl2(MeCN)2 (155 mg, 0.597 mol) was added to a suspension of anilide 11 (1.43 g, 3.12 mmol) and dry K2CO3 (3.12 g, 22.6 mmol) in anhyd DMF (150 mL) under argon. The mixture was stirred at 50 °C for 1.5 h, then poured into sat. aq NH4Cl (200 mL). The aqueous layer was separated and extracted with Et2O (3 × 200 mL). The combined organic layer was washed with H2O (3 × 500 mL), dried (Na2SO4), and concentrated to dryness in vacuo. The residue was purified by column chromatography [silica gel (20 g), Et2O–hexane (1:10)] to give a white amorphous solid; yield: 918 mg (78%). IR (film): 2965, 2923, 2845, 1445, 1372, 1363, 1237, 1187, 1174, 1119, 1092 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.11 (s, 3 H, CH3 ), 2.15–2.42 (m, 4 H, CHCH2 CH=CH, CCHa HbCH=CH, and CH2CHCH2), 2.34 (s, 3 H, CH3 of Ts), 2.51 (m, 1 H, HC=CCHa HbCH), 2.71 (dd, J = 14.5, 6.5 Hz, 1 H, HC=CCHa Hb CH), 2.95 (br dd, J = 16.5, 5.0 Hz, 1 H, CH3CCHa Hb CH=CH), 5.70 (m, 1 H, CH2CH=CH), 5.77 (m, 1 H, CH2CH=CH), 7.19 (d, J = 8.5 Hz, 2 H, aromatic of Ts), 7.21–7.29 (m, 2 H, aromatic), 7.38 (br d, J = 7.0 Hz, 1 H, aromatic), 7.69 (d, J = 8.5 Hz, 2 H, aromatic of Ts), 8.12 (br d, J = 7.5 Hz, 1 H, aromatic). 13C NMR (100 MHz, CDCl3): δ = 16.0, 21.5, 27.0, 27.2, 38.0, 44.1, 49.9, 114.8, 119.2, 123.2, 123.7, 126.4, 126.4, 126.4, 126.7, 126.9, 129.7, 136.6, 140.3, 144.5, 150.7. HRMS (ESI): m/z [M + Na]+ calcd for C23H23NNaO2S: 400.1342; found: 400.1322.
  • 28 Tambe SD, Iqbal N, Cho EJ. Org. Lett. 2020; 22: 8550