Synlett 2023; 34(07): 729-758
DOI: 10.1055/s-0042-1751370
account
Chemical Synthesis and Catalysis in India

Unravelling the Development of Non-Covalent Organocatalysis in India

Jigyansa Sahoo
,
Jeetendra Panda
,
Gokarneswar Sahoo
We would like to thank the Science and Engineering Research Board (SERB), DST-India (ECRA/2016/001975) (date: 03.01.2017) for a research fellowship to J.P. and the Science and Technology Department, Odisha (27562800512017/201296ST) (date: 24.02.2018) for financially supporting our research. J.S. is grateful to the National Institute of Technology Rourkela for a research fellowship.


This paper is dedicated to Dr. Mukund K. Gurjar on his 70th birthday

Abstract

This review is devoted to underpinning the contributions of Indian researchers towards asymmetric organocatalysis. More specifically, a comprehensive compilation of reactions mediated by a wide range of non-covalent catalysis is illustrated. A detailed overview of vividly catalogued asymmetric organic transformations promoted by hydrogen bonding and Brønsted acid catalysis, alongside an assortment of catalysts is provided. Although asymmetric organocatalysis has etched itself in history, we aim to showcase the scientific metamorphosis of Indian research from baby steps to large strides within this field.

1 Introduction

2 Non-Covalent Catalysis and Its Various Activation Modes

3 Hydrogen-Bonding Catalysis

3.1 Urea- and Thiourea-Derived Organocatalysts

3.1.1 Thiourea-Derived Organocatalysts

3.1.2 Urea-Derived Organocatalysts

3.2 Squaramide-Derived Organocatalysts

3.2.1 Michael Reactions

3.2.2 C-Alkylation Reactions

3.2.3 Mannich Reactions

3.2.4 [3+2] Cycloaddition Reactions

3.3 Cinchona-Alkaloid-Derived Organocatalysts

3.3.1 Michael Reactions

3.3.2 Aldol Reactions

3.3.3 Friedel–Crafts Reactions

3.3.4 Vinylogous Alkylation of 4-Methylcoumarins

3.3.5 C-Sulfenylation Reactions

3.3.6 Peroxyhemiacetalisation of Isochromans

3.3.7 Diels–Alder Reactions

3.3.8 Cycloaddition Reactions

3.3.9 Morita–Baylis–Hilman Reactions

4 Brønsted Acid Derived Organocatalysts

4.1 Chiral Phosphoric Acid Catalysis

4.1.1 Diels–Alder Reactions

4.1.2 Addition of Ketimines

4.1.3 Annulation of Acyclic Enecarbamates

5 Conclusion



Publication History

Received: 07 June 2022

Accepted after revision: 08 August 2022

Article published online:
12 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Madhan M, Gunasekaran S, Rani MT, Arunachalam S, Abinandanan TA. Chemistry Research in India in a Global Perspective – A Scientometrics Profile 2020; 1–39; arXiv: 2002.03093
  • 2 Salini CP, Nishy P, Vishnumaya RS, Mini S. A Bibliometric Evaluation of Organic Chemistry Research in India. In Annals of Library & Information Studies. CSIR-NIScPR; New Delhi: 2014
  • 3 https://www.chemistryworld.com/news/explainer-why-has-asymmetric-organocatalysis-won-the-chemistry-nobel-prize/4014530.article (accessed Sep 22, 2022)
  • 4 Liebig J. Ann. Chem. Pharm. 1860; 113: 246
  • 5 Knoevenagel E. Ber. Dtsch. Chem. Ges. 1894; 27: 2345
  • 6 Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
  • 7 Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
  • 8 Wagner J, Lerner RA, Barbas CF. Science 1995; 270: 1797
  • 9 Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
  • 10 Giuliano MW, Miller SJ. Top Ccurr Chem. 2016; 372: 157
  • 11 Wynberg H, Helder R. Tetrahedron Lett. 1975; 16: 4057
  • 12 Enders D, Narine AA. J. Org. Chem. 2008; 73: 7857
  • 13 Zuend SJ, Coughlin MP, Lalonde MP, Jacobsen EN. Nature 2009; 461: 968
  • 14 Zhang Q, Xiong Q, Li M, Xiong W, Shi B, Lan Y, Lu L, Xiao W. Angew. Chem. 2020; 132: 14200
  • 15 Seebach D, Badine DM, Schweizer WB, Beck AK, Krossing I, Klose P, Hayashi Y, Uchimaru T. Helv. Chim. Acta 2009; 92: 1225
  • 16 Burés J, Armstrong A, Blackmond DG. J. Am. Chem. Soc. 2011; 133: 8822
  • 17 Wiesner M, Wennemers H. Synthesis 2010; 1568
  • 18 Sahoo G, Rahaman H, Madarász Á, Pápai I, Melarto M, Valkonen A, Pihko PM. Angew. Chem. Int. Ed. 2012; 51: 13144
  • 19 Kótai B, Kardos G, Hamza A, Farkas V, Pápai I, Soós T. Chem. Eur. J. 2014; 20: 5631
    • 20a Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 20b Lelais G, MacMillan DW. C. Iminium Catalysis. In Enantioselective Organocatalysis: Reactions and Experimental Procedures. Dalko PI. Wiley-VCH; Weinheim: 2007: 95
  • 21 MacMillan DW. C. Nature 2008; 455: 304
  • 22 Lelais G, MacMillan DW. C. Aldrichimica Acta 2006; 39: 79
  • 23 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
  • 24 Chen Z, Yang Q.-Q, Du W, Chen Y.-C. Tetrahedron Chem 2022; 2: 100017
  • 25 Krištofíková D, Modrocká V, Mečiarová M, Šebesta R. ChemSusChem 2020; 13: 2828
  • 26 Antenucci A, Dughera S, Renzi P. ChemSusChem 2021; 14: 2785
  • 27 Han B, He XH, Liu YQ, He G, Peng C, Li JL. Chem. Soc. Rev. 2021; 50: 1522
  • 28 Anebouselvy K, Ramachary DB. Proc. Indian Natl. Sci. Acad. 2020; 86: 911
  • 29 Uma R, Swaminathan S, Rajagopalan K. Tetrahedron Lett. 1984; 25: 5825
  • 30 Malathi R, Rajagopal D, Hajos ZG, Swaminathan S. J. Chem. Sci. 2004; 116: 159
  • 31 Rajagopal D, Narayanan R, Swaminathan S. J Chem. Sci. 2001; 113: 197
  • 32 Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
  • 33 Miyabe H. Hydrogen-Bonding Activation in Chiral Organocatalysts. In Recent Advances in Organocatalysis. Karamé I, Srour H. InTech; Rijeka, Croatia: 2016
  • 34 Moyano A. In Stereoselective Organocatalysis: Bond Formation Methodologies and Activation Modes. Torres RR. John Wiley & Sons; Hoboken: 2013: 11-80
  • 35 Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
  • 36 Etter MC. J. Phys. Chem. 1991; 95: 4601
  • 37 Etter MC, Zia-Ebrahimi M, Urbañczyk-Lipkowska Z, Panunto TW. J. Am. Chem. Soc. 1990; 112: 8415
  • 38 Etter MC. Acc. Chem. Res. 1990; 23: 120
  • 39 Etter MC, Panunto TW. J. Am. Chem. Soc. 1998; 110: 5896
  • 40 Curran DP, Kuo LH. Tetrahedron Lett. 1995; 36: 6647
  • 41 Curran DP, Kuo LH. J. Org. Chem. 1994; 59: 3259
  • 42 Wittkopp A, Schreiner PR. Chem. Eur. J. 2003; 9: 407
  • 43 Schreiner PR, Wittkopp A. Org. Lett. 2002; 4: 217
  • 44 Yu X, Wang W. Chem. Asian J. 2008; 3: 516
  • 45 Kumar A, Kaur J, Chauhan P, Chimni SS. Chem. Asian J. 2014; 9: 1305
  • 46 Kaur J, Kumar A, Chimni SS. Tetrahedron Lett. 2014; 55: 2138
  • 47 Allu S, Selvakumar S, Singh VK. Tetrahedron Lett. 2010; 51: 446
  • 48 Rana NK, Singh VK. Org. Lett. 2011; 13: 6520
  • 49 Manna MS, Kumar V, Mukherjee S. Chem. Commun. 2012; 48: 5193
  • 50 Unhale RA, Rana NK, Singh VK. Tetrahedron Lett. 2013; 54: 1911
  • 51 Kayal S, Mukherjee S. Eur. J. Org. Chem. 2014; 6696

    • For recent reports on ring-fused chromans, see:
    • 52a Isabashi K. J. Antibiot. Ser. A 1962; 15: 161
    • 52b Ward A, Holmes B. Drugs 1985; 30: 127
    • 52c Roll DM, Manning JK, Carter GT. J. J. Antibiot. 1998; 51: 635
    • 52d Barrero AF, Alvarez-Manzaneda EJ, Chahboun R, Cortés M, Armstrong V. Tetrahedron 1999; 55: 15181
    • 52e Lambert DM, Fowler CJ. J. Med. Chem. 2005; 48: 5059
    • 52f Sasikumar TK, Burnett DA, Asberom T, Wu W.-L, Li HM, Xu R, Josien HB. WO2009011851, 2009
    • 53a Saha P, Biswas A, Molleti M, Singh VK. J. Org. Chem. 2015; 80: 11115
    • 53b Rout S, Ray SK, Unhale RA, Singh VK. Org. Lett. 2014; 16: 5568
  • 54 Midya A, Maity S, Ghorai P. Chem. Eur. J. 2017; 23: 11216
  • 55 Mukhopadhyay S, Nath U, Pan SC. Adv. Synth. Catal. 2017; 359: 3911
  • 56 Maity R, Gharui C, Sil AK, Pan SC. Org. Lett. 2017; 19: 662
  • 57 Bhagat UK, Peddinti RK. J. Org. Chem. 2018; 83: 793
  • 58 Mondal B, Pan SC. Synlett 2018; 29: 576
  • 59 Bania N, Pan SC. Org. Biomol. Chem. 2019; 17: 1718
  • 60 Parida C, Pan SC. Beilstein J. Org. Chem. 2021; 1447
  • 61 Tripathi CB, Mukherjee S. Angew. Chem. Int. Ed. 2013; 52: 8450
  • 62 Roy JS, Mukherjee S. Chem. Commun. 2014; 50: 121
  • 63 Manna MS, Mukherjee S. Chem. Sci. 2014; 5: 1627
  • 64 Simlandy AK, Mukherjee S. Org. Biomol. Chem. 2016; 14: 5659
  • 65 Choudhury AR, Mukherjee S. Chem. Sci. 2016; 7: 6940
  • 66 Choudhury AR, Manna MS, Mukherjee S. Chem. Sci. 2017; 8: 6686
  • 67 Ramachary DB, Pasha MA, Thirupathi G. Angew. Chem. Int. Ed. 2017; 56: 12930
  • 68 Mondal B, Mondal K, Satpati P, Pan SC. Eur. J. Org. Chem. 2017; 7101
  • 69 Mukhopadhyay S, Pan SC. Org. Biomol. Chem. 2018; 16: 5407
  • 70 Allu S, Molleti N, Panem R, Singh VK. Tetrahedron Lett. 2011; 52: 4080
  • 71 Kayal S, Mukherjee S. Org. Lett. 2015; 17: 5508
  • 72 Ray B, Mukherjee S. J. Org. Chem. 2018; 83: 10871
  • 73 Rana NK, Selvakumar S, Singh VK. J. Org. Chem. 2010; 75: 2089
  • 74 Rana NK, Unhale R, Singh VK. Tetrahedron Lett. 2012; 53: 2121
  • 75 Molleti N, Rana NK, Singh VK. Org. Lett. 2012; 14: 4322
  • 76 Molleti N, Allu S, Ray SK, Singh VK. Tetrahedron Lett. 2013; 54: 3241
  • 77 Joshi H, Yadav A, Das A, Singh VK. J. Org. Chem. 2020; 85: 3202
  • 78 Manna MS, Mukherjee S. J. Am. Chem. Soc. 2015; 137: 130
  • 79 Kumar V, Ray B, Rathi P, Mukherjee S. Synthesis 2013; 1641
  • 80 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
  • 81 Popova EA, Pronina YA, Davtian AV, Nepochatyi GD, Petrov ML, Boitsov VM, Stepakov AV. Russ. J. Gen. Chem. 2022; 92: 287
  • 82 Cohen S, Cohen SG. J. Am. Chem. Soc. 1966; 88: 1533
  • 83 Marchetti LA, Kumawat LK, Mao N, Stephens JC, Elmes RB. P. Chem 2019; 5: 1398
  • 84 Ravindra B, Maity S, Das BG, Ghorai P. J. Org. Chem. 2015; 80: 7008
  • 85 Reddy RR, Gudup SS, Ghorai P. Angew. Chem. Int. Ed. 2016; 55: 15115
  • 86 Parhi B, Gurjar J, Pramanik S, Midya A, Ghorai P. J. Org. Chem. 2016; 81: 4654
  • 87 Hazra G, Maity S, Bhowmick S, Ghorai P. Chem. Sci. 2017; 8: 3026
  • 88 Molleti N, Singh VK. Org. Biomol. Chem. 2015; 13: 5243
  • 89 Kayal S, Mukherjee S. Org. Biomol. Chem. 2016; 14: 10175
  • 90 Rana NK, Jha RK, Joshi H, Singh VK. Tetrahedron Lett. 2017; 58: 2135
  • 91 Gharui C, Behera D, Pan SC. Adv. Synth. Catal. 2018; 360: 4502
  • 92 Mukhopadhyay S, Pan SC. Chem. Commun. 2018; 54: 964
  • 93 Mondal K, Pan SC. J. Org. Chem. 2018; 83: 5301
  • 94 Parida C, Maity R, Sahoo SC, Pan SC. Org. Lett. 2019; 21: 6700
  • 95 Rajasekar S, Anbarsan P. Org. Lett. 2019; 21: 3067
  • 96 Ray B, Mukherjee S. Tetrahedron 2019; 75: 3292
  • 97 Jha RK, Rout S, Joshi H, Das A, Singh VK. Tetrahedron 2020; 76: 130800
  • 98 Mukhopadhyay S, Pan SC. Adv. Synth. Catal. 2019; 361: 1028
  • 99 Mondal B, Maity R, Pan SC. J. Org. Chem. 2018; 83: 8645
  • 100 Balha M, Mondal B, Pan SC. Org. Biomol. Chem. 2019; 17: 6557

    • For selected reviews, see:
    • 101a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 101b Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 101c Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 101d Cheng DJ, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
    • 101e Mei G.-j, Shi F. Chem. Commun. 2018; 54: 6607
  • 102 Sharma V, Bhardwaj VK, Chimni SS. ChemistrySelect 2018; 3: 5348
  • 103 Sharma V, Kaur J, Chimni SS. Eur. J. Org. Chem. 2018; 3489
  • 104 Kaur J, Kumari A, Bhardwaj VK, Chimni SS. Adv. Synth. Catal. 2017; 359: 1725
  • 105 Kumar V, Mukherjee S. Chem. Commun. 2013; 49: 11203
  • 106 Gharui C, Parida C, Pan SC. J. Org. Chem. 2021; 86: 13071
  • 107 Mukhopadhyay S, Pan SC. Eur. J. Org. Chem. 2019; 2639
  • 108 Mahto P, Shukla K, Das A, Singh VK. Tetrahedron 2021; 87: 132115
  • 109 Bredig G, Fiske PS. Biochem. Z. 1912; 46: 7
  • 110 Pracejus G. Leibigs Ann. Chem. 1959; 10: 622
  • 111 Wynberg H, Staring EG. J. J. Am. Chem. Soc. 1982; 104: 166
  • 112 Kolb HC, VanNieumenhze MS, Zhang S, Sharpless KB. Chem. Rev. 1994; 94: 2483
  • 113 Corey EJ, Noe MC. J. Am. Chem. Soc. 1993; 115: 12579
  • 114 Singh G, Yeboah E. Rep. Org. Chem. 2016; 6: 47
  • 115 Tian SK, Chen Y, Hang J, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
  • 116 Chauhan P, Chimni SS. Adv. Synth. Catal. 2011; 353: 3203
  • 117 Chauhan P, Chimni SS. Asian J. Org. Chem. 2012; 1: 138
  • 118 Kaur J, Islam N, Kumar A, Bhardwaj VK, Chimni SS. Tetrahedron 2016; 72: 8042
  • 119 Choudhury AR, Mukherjee S. Org. Biomol. Chem. 2012; 10: 7313
  • 120 Balha M, Soni C, Pan SC. Eur. J. Org. Chem. 2019; 2552
  • 121 Kumar A, Kaur J, Chimni SS, Jassal AK. RSC Adv. 2014; 4: 24816
  • 122 Kumar A, Chimni SS. Eur. J. Org. Chem. 2013; 22: 4780
  • 123 Chauhan P, Chimni SS. Tetrahedron Lett. 2013; 54: 4613
  • 124 Chauhan P, Chimni SS. Eur. J. Org. Chem. 2011; 1636
  • 125 Kayal S, Mukherjee S. Org. Lett. 2017; 19: 4944
  • 126 Roy SJ, Mukherjee S. Org. Biomol. Chem. 2017; 15: 6921
  • 127 Tamanna Tamanna, Hussain Y, Sharma D, Chauhan P. J. Org. Chem. 2022; 87: 6397
  • 128 Ramachary DB, Krishna PM. Asian J. Org. Chem. 2016; 5: 729
  • 129 Krishna AV, Reddy GS, Gorachand B, Ramachary DB. Eur. J. Org. Chem. 2020; 6623
  • 130 Nath U, Pan SC. Eur. J. Org. Chem. 2017; 6457
  • 131 Chauhan P, Chimni SS. Asian J. Org. Chem. 2013; 2: 586
  • 132 Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 133 Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
  • 134 Thadani AN, Stankovic AR, Rawal VH. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5846
  • 135 Terada M. Bull. Chem. Soc. Jpn. 2010; 83: 101
  • 136 Ramachary DB, Reddy PS, Shruthi KS, Madhavachary R, Reddy PV. G. Eur. J. Org. Chem. 2016; 5220
  • 137 Unhale RA, Molleti N, Rana NK, Dhanasekaran S, Bhandary S, Singh VK. Tetrahedron Lett. 2017; 58: 145
  • 138 Unhale RA, Sadhu MM, Ray SK, Biswas RG, Singh VK. Chem. Commun. 2018; 54: 3516
  • 139 Unhale RA, Sadhu MM, Singh VK. Org. Lett. 2022; 24: 3319
  • 140 Gharui C, Singh S, Pan SC. Org. Biomol. Chem. 2017; 15: 7272
  • 141 Rout S, Ray SK, Unhale RA, Singh VK. Org. Lett. 2014; 16: 5568
  • 142 Gharui C, Behera D, Pan SC. Adv. Synth. Catal. 2018; 360: 4502
  • 143 Akiyama T, itoh J, Yakota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566