Synlett 2018; 29(18): 2422-2426
DOI: 10.1055/s-0037-1611227
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Oxidative Self-Coupling of α-Amino Carbonyl Compounds for the Synthesis of Tetrasubstituted 1,4-Enediones

Niannian Yi
a   College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. of China   eMail: bingyi2004@126.com
b   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China   eMail: jnxiang@hnu.edu.cn
,
Yi Xiong
b   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China   eMail: jnxiang@hnu.edu.cn
,
Qingjun Huang
a   College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. of China   eMail: bingyi2004@126.com
,
Ning Yan
a   College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. of China   eMail: bingyi2004@126.com
,
Yanjun Xie
a   College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. of China   eMail: bingyi2004@126.com
,
Donghui Lan
a   College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. of China   eMail: bingyi2004@126.com
,
Ziqi Yi
b   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China   eMail: jnxiang@hnu.edu.cn
,
Chak-Tong Au
a   College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. of China   eMail: bingyi2004@126.com
,
Bing Yi*
a   College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. of China   eMail: bingyi2004@126.com
,
Jiannan Xiang*
b   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China   eMail: jnxiang@hnu.edu.cn
› Institutsangaben
This work was supported by the National Natural Science Foundation of China (No. 21772035), and the Provincial Natural Science Foundation of Hunan (No. 2018JJ3099).
Weitere Informationen

Publikationsverlauf

Received:31.08.2018

Accepted after revision: 30. September 2018

Publikationsdatum:
17. Oktober 2018 (online)


Abstract

A protocol for the copper-catalyzed oxidative self-coupling of α-amino carbonyl compounds has been developed for the synthesis of tetrasubstituted 1,4-enediones (Z-isomers) in moderate to good yields through the cleavage of four sp3C–H bonds and the simultaneous formation of one C=C double bond in the α-amino carbonyl compound. The strategy has the advantages of using readily available starting ­materials and of high stereoselectivity.

Supporting Information

 
  • References and Notes

    • 1a Niu X.-F. Liu X. Pan L. Qi L. Fitoterapia 2011; 82: 960
    • 1b Lv F. Xu M. Deng Z. de Voogd NJ. van Soest RW. M. Proksch P. Lin W. J. Nat. Prod. 2008; 71: 1738
    • 1c Fouad M. Edrada RA. Ebel R. Wray V. Müller WE. G. Lin WH. Proksch P. J. Nat. Prod. 2006; 69: 211
    • 1d Cai P. Kong F. Ruppen ME. Glasier G. Carter GT. J. Nat. Prod. 2005; 68: 1736
    • 1e Abou-Gazar H. Bedir E. Takamatsu S. Ferreira D. Khan IA. Phytochemistry 2004; 65: 2499
    • 2a Shu W.-M. Yang Y. Zhang D.-X. Wu L.-M. Zhu Y.-P. Yin G.-D. Wu A.-X. Org. Lett. 2013; 15: 456
    • 2b Gao Q. Zhu Y. Lian M. Liu M. Yuan J. Yin G. Wu A.-X. J. Org. Chem. 2012; 77: 9865
    • 2c Gao M. Yang Y. Wu Y.-D. Deng C. Shu W.-M. Zhang D.-X. Cao L.-P. She N.-F. Wu A.-X. Org. Lett. 2010; 12: 4026
    • 2d Yin G. Wang Z. Chen A. Gao M. Wu A.-X. Pan Y. J. Org. Chem. 2008; 73: 3377

      For selected papers, see:
    • 3a Wei D. Liang F. Org. Lett. 2016; 18: 5860
    • 3b Li SY. Wang XB. Jiang N. Kong LY. Eur. J. Org. Chem. 2014; 8035
    • 3c Xu K. Fang Y. Yan Z. Zha Z. Wang Z. Org. Lett. 2013; 15: 2148
    • 3d Asta C. Conrad J. Mika S. Beifuss U. Green Chem. 2011; 13: 3066
    • 3e Wasnaire P. de Merode T. Markó IE. Chem. Commun. 2007; 4755
    • 3f Crone B. Kirsch SF. Chem. Commun. 2006; 764
    • 3g Yu J.-Q. Corey EJ. J. Am. Chem. Soc. 2003; 125: 3232
    • 3h Runcie KA. Taylor RJ. K. Chem. Commun. 2002; 974
    • 3i Baratta W. Del Zotto A. Chem. Commun. 1997; 2163

      For selected papers, see:
    • 4a Devari S. Kumar A. Deshidi R. Shah BA. Chem. Commun. 2015; 51: 5013
    • 4b Meng X. Zhang J. Chen G. Chen B. Zhao P. Catal. Commun. 2015; 69: 239
    • 4c Deng C. Yang Y. Gao M. Zhu Y.-P. Wu A.-X. Ma J.-R. Yin G.-D. Tetrahedron 2012; 68: 3828
    • 4d Gao M. Yang Y. Wu Y.-D. Deng C. Cao L.-P. Meng X.-G. Wu A.-X. Org. Lett. 2010; 12: 1856
    • 4e Yin G. Zhao B. Meng X. Wu A.-X. Pan Y. Org. Lett. 2006; 8: 2245
    • 4f Prakash O. Batra A. Chaudhri V. Prakash R. Tetrahedron Lett. 2005; 46: 2877
  • 5 Yang Y. Ni F. Shu W.-M. Yu S.-B. Gao M. Wu A.-X. J. Org. Chem. 2013; 78: 5418
  • 6 Zhang J. Meng X. Yu C. Chen G. Zhao P. RSC Adv. 2015; 5: 87221
  • 7 Yang Z.-H. An Y.-L. Chen Y. Shao Z.-Y. Zhao S.-Y. Adv. Synth. Catal. 2016; 358: 3869
  • 8 Yang Z.-H. Tan H.-R. An Y.-L. Zhao Y.-W. Lin H.-P. Zhao S.-Y. Adv. Synth. Catal. 2018; 360: 173
    • 9a Chen C. Zhu M. Jiang L. Zeng Z. Yi N. Xiang J. Org. Biomol. Chem. 2017; 15: 8134
    • 9b Yi N. Li J. Zhang H. Wang R. Jiang J. Deng W. Zeng Z. Xiang J. Synth. Commun. 2017; 47: 2062
    • 9c Yi N. Zhang H. Xu C. Deng W. Wang R. Peng D. Zeng Z. Xiang J. Org. Lett. 2016; 18: 1780
    • 9d Yi N. Wang R. Zou H. He W. Fu W. He WM. J. Org. Chem. 2015; 80: 5023
    • 9e Xiang J. Yi N. Wang R. Lu L. Zou H. Pan Y. He W. Tetrahedron 2015; 71: 694
    • 9f Tang R.-Y. Guo X.-K. Xiang J.-N. Li J.-H. J. Org. Chem. 2013; 78: 11163
    • 10a Borzęcka W. Lavandera I. Gotor V. J. Org. Chem. 2013; 78: 7312
    • 10b Pal M. Swamy NK. Hameed PS. Padakanti S. Yeleswarapu KR. Tetrahedron 2004; 60: 3987

      For selected papers, see:
    • 11a Li L. Chen J.-J. Li Y.-J. Bu X.-B. Liu Q. Zhao Y.-L. Angew. Chem. Int. Ed. 2015; 54: 12107
    • 11b Peng H. Yu J.-T. Jiang Y. Yang H. Cheng J. J. Org. Chem. 2014; 79: 9847
    • 11c Yang B. Yang T.-T. Li X.-A. Wang J.-J. Yang S.-D. Org. Lett. 2013; 15: 5024
    • 11d Wu J.-C. Song R.-J. Wang Z.-Q. Huang X.-C. Xie Y.-X. Li J.-H. Angew. Chem. Int. Ed. 2012; 51: 3453
    • 11e Wang Z.-Q. Hu M. Huang X.-C. Gong L.-B. Xie Y.-X. Li J.-H. J. Org. Chem. 2012; 77: 8705
    • 11f Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2014; 356: 1703
    • 11g Zhang X. Zeng W. Yang Y. Huang H. Liang Y. Org. Lett. 2014; 16: 876
  • 12 CCDC 1842875 contains the supplementary crystallographic data for compound 2a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 13a Liu X.-X. Wu Z.-Y. He Y.-Q. Zhou X.-Q. Hu T. Ma C.-W. Huang G.-S. Adv. Synth. Catal. 2016; 358: 2385
    • 13b Song R.-J. Liu Y. Hu R.-X. Liu Y.-Y. Wu J.-C. Yang X.-H. Li J.-H. Adv. Synth. Catal. 2011; 353: 1467
    • 13c Yang Y. Song R.-J. Ouyang X.-H. Wang C.-Y. Li J.-H. Luo S.-L. Angew. Chem. Int. Ed. 2017; 56: 7916
    • 13d Liu Y.-Y. Yang X.-H. Song R.-J. Luo S.-L. Li J.-H. Nat. Commun. 2017; 8: 14720
    • 13e Song R.-J. Liu Y. Xie Y.-X. Li J.-H. Synthesis 2015; 47: 1195
  • 14 (2Z)-2,3-Diamino-1,4-diarylbut-2-ene-1,4-diones (2as);General Procedure A pressure tube was charged with the α-amino carbonyl compound 1 (0.5 mmol), Cu(acac)2 (0.05 mmol, 13 mg), DBU (1 mmol, 152 mg), DTBP (1.5 mmol, 219 mg), and CH3CN (2 mL). The tube was then sealed and the mixture was stirred at 100 °C for 12 h. When reaction was complete, the mixture was diluted with EtOAc (15 mL) and washed with H2O. The separated aqueous phase was extracted with EtOAc (2 × 15 mL), and the combined organic layers were washed with brine, dried (­Na2SO4), filtered, and concentrated in vacuo. The crude mixture was purified by column chromatography (silica gel, ­­PE–EtOAc). (2Z)-2,3-Bis[methyl(phenyl)amino]-1,4-diphenylbut-2-ene-1,4-dione (2a) Orange solid; yield: 89 mg (80%); mp = 166–168 °C. 1H NMR (400 MHz, CDCl3): δ = 7.79 (d, J = 7.2 Hz, 2 H), 7.43 (t, J = 7.2 Hz, 1 H), 7.32 (t, J = 7.2 Hz, 2 H), 7.11 (t, J = 7.6 Hz, 2 H), 6.83 (t, J = 7.2 Hz, 1 H), 6.76 (d, J = 8.0 Hz, 2 H), 3.02 (s, 3 H). 13C NMR (100 MHz, CDCl3) δ = 194.2, 145.1, 137.8, 132.2, 128.7, 128.5, 128.1, 121.1, 117.2, 38.3. HRMS (EI): m/z [M]+ calcd for C30H26N2O2: 446.1989; found: 446.2005.