Synlett 2019; 30(02): 218-224
DOI: 10.1055/s-0037-1610678
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Aerobic Oxidation of Benzylic C(sp3)–H of Alkylarenes Promoted by DDQ, tert-Butyl Nitrite, and Acetic Acid

Decheng Pan
,
Yiqing Wang
,
Meichao Li
,
Xinquan Hu
,
Nan Sun
,
Liqun Jin
,
Baoxiang Hu
,
Zhenlu Shen*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: zhenlushen@zjut.edu.cn
› Institutsangaben
This project was supported by the National Natural Science Foundation of China (21776260 and 21773211) and by the Natural Science Foundation of Zhejiang Province (LY17B060007).
Weitere Informationen

Publikationsverlauf

Received: 20. September 2018

Accepted after revision: 19. November 2018

Publikationsdatum:
17. Dezember 2018 (online)


Abstract

A visible-light photocatalytic aerobic oxidation of benzylic C(sp3)–H bonds proceeded in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tert-butyl nitrite, and acetic acid. Advantages of this aerobic oxidation method include its relatively mild conditions, the use of visible-light irradiation instead of conventional thermal methods, the use of a low catalyst loading, and the ability to oxidize a range of alkyl­arenes, including xanthenes, thioxanthenes, and 9,10-dihydroacridines, to the corresponding ketones in excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Shibley IA. Jr, Amaral KE, Aurentz DJ, McCaully RJ. J. Chem. Educ. 2010; 87: 1351
    • 1b Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DH. B. Chem. Rev. 2006; 106: 2493
    • 1c Halkides CJ. J. Chem. Educ. 2000; 77: 1428
    • 1d Triandafillidi I, Tzaras DI, Kokotos CG. ChemCatChem 2018; 10: 2521
    • 2a Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 2b Li X.-H, Chen J.-S, Wang X.-C, Sun J.-H, Antonietti M. J. Am. Chem. Soc. 2011; 133: 8074
    • 2c Kesavan L, Tiruvalam R, Ab Rahim MH, bin Saiman MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ. Science 2011; 331: 195
    • 2d Nakamura R, Obora Y, Ishii Y. Adv. Synth. Catal. 2009; 351: 1677
    • 2e Tan J, Zheng T, Yu Y, Xu K. RSC Adv. 2017; 7: 15176
    • 2f Tomás RA. F, Bordado JC. M, Gomes JF. P. Chem. Rev. 2013; 113: 7421
    • 2g Yang J, Hu J, Huang Y, Xu X, Qing F. Chin. J. Chem. 2017; 35: 867
    • 3a Muzart J. Tetrahedron Lett. 1987; 28: 2131
    • 3b Muzart J. Chem. Rev. 1992; 92: 113
    • 3c Muzart J, Ajjou AN. J. Mol. Catal. 1994; 92: 277
    • 3d Yamazaki S. Org. Lett. 1999; 1: 2129
    • 3e Choudary BM, Prasad AD, Bhuma V, Swapna V. J. Org. Chem. 1992; 57: 5841
    • 4a Lee NH, Lee CS, Jung DS. Tetrahedron Lett. 1998; 39: 1385
    • 4b Shaabani A, Lee DG. Tetrahedron Lett. 2001; 42: 5833
    • 4c Pan J.-F, Chen K. J. Mol. Catal. A: Chem. 2001; 176: 19
    • 4d Zhao D, Lee DG. Synthesis 1994; 915
  • 5 Khenkin AM, Neumann R. J. Am. Chem. Soc. 2002; 124: 4198
  • 6 Dohi T, Takenaga N, Goto A, Fujioka H, Kita Y. J. Org. Chem. 2008; 73: 7365
    • 7a Aguadero A, Falcon H, Campos-Martin JM, Al-Zahrani SM, Fierro JL. G, Alonso JA. Angew. Chem. Int. Ed. 2011; 50: 6557
    • 7b Recupero F, Punta C. Chem. Rev. 2007; 107: 3800
    • 7c Lee JM, Park EJ, Cho SH, Chang S. J. Am. Chem. Soc. 2008; 130: 7824
    • 8a Biradar AV, Asefa T. Appl. Catal., A 2012; 435–436: 19
    • 8b Kumar RA, Maheswari CU, Ghantasala S, Jyothi C, Reddya KR. Adv. Synth. Catal. 2011; 353: 401
    • 8c Nakanishi M, Bolm C. Adv. Synth. Catal. 2007; 349: 861
    • 8d Alanthadka A, Devi ES, Nagarajan S, Sridharan V, Suvitha A, Maheswari CU. Eur. J. Org. Chem. 2016; 4872
    • 8e Ang WJ, Lam Y. Org. Biomol. Chem. 2015; 13: 1048
    • 8f Catino AJ, Nichols JM, Choi H, Gottipamula S, Doyle MP. Org. Lett. 2005; 7: 5167
    • 8g Tanaka H, Oisaki K, Kanai M. Synlett 2017; 28: 1576
    • 8h Hossain MM, Shyu S.-G. Tetrahedron 2016; 72: 4252
    • 9a Liu P, Liu Y.-G, Wong EL.-M, Xiang S, Che C.-M. Chem. Sci. 2011; 2: 2187
    • 9b Moriyama K, Takemura M, Togo H. Org. Lett. 2012; 14: 2414
    • 10a Wu X.-F. Tetrahedron Lett. 2012; 53: 6123
    • 10b Akhlaghinia B, Ebrahimabadi H, Goharshadi EK, Samiee S, Rezazadeh S. J. Mol. Catal. A: Chem. 2012; 357: 67
    • 10c Hu Y, Zhou L, Lu W. Synthesis 2017; 49: 4007
    • 10d Gonsalvi L, Arends IW. C. E, Moilanen P, Sheldon RA. Adv. Synth. Catal. 2003; 345: 1321
    • 11a Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 11b Liang Y.-F, Ning J. Acc. Chem. Res. 2017; 50: 1640
    • 11c Jiang X, Zhai Y, Chen J, Han Y, Yang Z, Ma S. Chin. J. Chem. 2018; 36: 15
    • 11d Lia X, Jiao N. Chin. J. Chem. 2017; 35: 1349
    • 12a Nakai S, Uematsu T, Ogasawara Y, Suzuki K, Yamaguchi K, Mizuno N. ChemCatChem 2018; 10: 1096
    • 12b Hong C, Ma J, Li M, Jin L, Hu X, Mo W, Hu B, Sun N, Shen Z. Tetrahedron 2017; 73: 3002
    • 12c Sterckx H, Houwer JD, Mensch C, Herrebout W, Tehrani KA, Maes BU. W. Beilstein J. Org. Chem. 2016; 12: 144
    • 12d Miao C, Zhao H, Zhao Q, Xia C, Sun W. Catal. Sci. Technol. 2016; 6: 1378
    • 12e Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 12f Tzouras NV, Stamatopoulos IK, Papastavrou AT, Liori A, Vougioukalakis GC. Coord. Chem. Rev. 2017; 343: 25
  • 13 Chen K, Zhang P, Wang Y, Li H. Green Chem. 2014; 16: 2344
    • 14a Zhang B, Cui Y, Jiao N. Chem. Commun. 2012; 48: 4498
    • 14b Zhang Z, Gao Y, Liu Y, Li J, Xie H, Li H, Wang W. Org. Lett. 2015; 17: 5492
    • 14c Liu Q, Lu M, Yang F, Wei W, Sun F, Yang Z, Huang S. Synth. Commun. 2010; 40: 1106
    • 14d Pradhan PP, Bobbitt JM, Bailey WF. J. Org. Chem. 2009; 74: 9524
    • 14e Wang H, Wang Z, Huang H, Tan J, Xu K. Org. Lett. 2016; 18: 5680
    • 14f Li J.-S, Yang F, Yang Q, Li Z.-W, Chen G.-Q, Da Y.-D, Huang P.-M, Chen C, Zhang Y, Huang L.-Z. Synlett 2017; 28: 994
    • 15a Deng G.-B, Wang Z.-Q, Xia J.-D, Qian P.-C, Song R.-J, Hu M, Gong L.-B, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 1535
    • 15b Cai S, Zhao X, Wang X, Liu Q, Li Z, Wang DZ. Angew. Chem. Int. Ed. 2012; 51: 8050
    • 15c Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew. Chem. Int. Ed. 2012; 51: 4062
    • 15d Lechner R, Kümmel S, König B. Photochem. Photobiol. Sci. 2010; 9: 1367
    • 15e Brimioulle R, Bach T. Science 2013; 342: 840
    • 15f Yoo W.-J, Kobayashi S. Green Chem. 2013; 15: 1844
    • 15g Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 16a Li S, Zhu B, Lee R, Qiao B, Jiang Z. Org. Chem. Front. 2018; 5: 380
    • 16b Jung J, Ohkubo K, Prokop-Prigge KA, Neu HM, Goldberg DP, Fukuzumi S. Inorg. Chem. 2013; 52: 13594
    • 16c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 16d Pandey G, Jadhav D, Tiwari SK, Singha B. Adv. Synth. Catal. 2014; 356: 2813
    • 16e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 16f Shaw MH, Twilton J, MacMillan WC. J. Org. Chem. 2016; 81: 6898
    • 16g Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 16h Chen J, Cen J, Xu X, Li X. Catal. Sci. Technol. 2016; 6: 349
    • 16i Yu W, Ouyang Y, Xu X.-H, Qing F.-L. Chin. J. Chem. 2018; 36: 1024
    • 17a Yi H, Bian C, Hu X, Niu L, Lei A. Chem. Commun. 2015; 51: 14046
    • 17b Finney LC, Mitchell LJ, Moody CJ. Green Chem. 2018; 20: 2242
    • 17c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 17d Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 17e Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 17f Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
    • 17g Walsh K, Sneddon HF, Moody CJ. Org. Lett. 2014; 16: 5224
    • 17h Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 18a Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
    • 18b Buckle DR, Collier SJ, McLaws MD. In Encyclopedia of Reagents for Organic Synthesis . Crich D. Wiley; New York: 2005. DOI: 10.1002/047084289X.rd114.pub2
    • 18c Bharate SB. Synlett 2006; 496
    • 18d Song C, Dong X, Yi H, Chiang C, Lei A. ACS Catal. 2018; 8: 2195
    • 18e Batista VS, Crabtree RH, Konezny SJ, Luca OR, Praetorius JM. New J. Chem. 2012; 36: 1141
    • 18f Benfatti F, Capdevila MG, Zoli L, Benedetto E, Cozzi PG. Chem. Commun. 2009; 5919
    • 18g Li J.-S, Xue Y, Fu D.-M, Li D.-L, Li Z.-W, Liu W.-D, Pang H.-L, Zhang Y-F, Cao Z, Zhang L. RSC Adv. 2014; 4: 54039
    • 18h Höfler C, Rüchardt C. Liebigs Ann. 1996; 183
    • 18i Masuo R, Ohmori K, Hintermann L, Yoshida S, Suzuki K. Angew. Chem. Int. Ed. 2009; 48: 3462
    • 18j Wu Z, Wei G, Lian G, Yu B. J. Org. Chem. 2010; 75: 5725
    • 18k Cheng D, Wu L, Deng Z, Xu X, Yan J. Adv. Synth. Catal. 2017; 359: 4317
    • 18l Cheng D, Wu L, Lv H, Xu X, Yan J. J. Org. Chem. 2017; 82: 1610
    • 18m Yi H, Liu Q, Liu J, Zeng ZQ, Yang YH, Lei AW. ChemSusChem 2012; 5: 2143
    • 19a Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
    • 19b Jung HH, Floreancig PE. Tetrahedron 2009; 65: 10830
    • 19c Rüchardt C, Gerst M, Ebenhoch J. Angew. Chem. Int. Ed. 1997; 36: 1406
    • 20a Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
    • 20b Shen Z, Sheng L, Zhang X, Mo W, Hu B, Sun N, Hu X. Tetrahedron Lett. 2013; 54: 1579
    • 20c Ma J, Hu Z, Li M, Zhao W, Hu X, Mo W, Hu B, Sun N, Shen ZL. Tetrahedron 2015; 71: 6733
    • 21a Fukuzumi S, Ohkubo K, Tokuda Y, Suenobu T. J. Am. Chem. Soc. 2000; 122: 4286
    • 21b Hubig SM, Bockman TM, Kochi JK. J. Am. Chem. Soc. 1997; 119: 2926
  • 22 Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
  • 23 Rusch F, Schober J.-C, Brasholz M. ChemCatChem 2016; 8: 2881
    • 24a Zhang X, Yang L, Wu Y, Du J, Mao Y, Wang X, Luan S, Lei Y, Li X, Sun H, You Q. Tetrahedron Lett. 2014; 55: 4883
    • 24b Zhang S.-J, Ding Z.-S, Jiang F.-S, Ge Q.-F, Guo D.-W, Lid H.-B, Hu W.-X. Med. Chem. Commun. 2014; 5: 512
    • 24c Patra N, Dehury N, Pal A, Behera A, Patra S. Mater. Sci. Eng., C 2018; 90: 439
    • 24d Yilmaz G, Guler E, Barlas FB, Timur S, Yagci Y. Macromol. Rapid Commun. 2016; 37: 1046
    • 24e Iyer A, Clay A, Jockusch S, Sivaguru J. J. Phys. Org. Chem. 2017; 30: e3738
    • 24f Silva R, Palmeira A, Carmo H, Barbosa DJ, Gameiro M, Gomes A, Mafalda Paiva A, Sousa E, Pinto M, de Lourdes Bastos M, Remião F. Arch. Toxicol. 2015; 89: 1783
    • 24g Zhang B, Chen K, Wang N, Gao CM, Sun QS, Li L, Chen Y, Tan C, Liu H, Jiang Y. Eur. J. Med. Chem. 2015; 93: 214
    • 24h Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 24i Belmont P, Bosson J, Godet T, Tiano M. Anti-Cancer Agents Med. Chem. 2007; 7: 139
    • 25a Shen Z, Chen M, Fang T, Li M, Mo W, Hu B, Sun N, Hu X. Tetrahedron Lett. 2015; 56: 2768
    • 25b Hong Y, Fang T, Li M, Shen Z, Hu X, Mo W, Hu B, Sun N, Jin L. RSC Adv. 2016; 6: 51908
    • 26a Li P, Jia X. Synthesis 2018; 50: 711
    • 26b Khaligh NG. Curr. Org. Chem. 2018; 22: 1120
    • 26c Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Adv. Synth. Catal. 2016; 358: 1157
    • 26d Yi S, Li M, Hu X, Mo W, Shen Z. Chin. Chem. Lett. 2016; 27: 1505
    • 26e He X, Shen Z, Mo W, Sun N, Hu B, Hu X. Adv. Synth. Catal. 2009; 351: 89
    • 26f Ma J, Hong C, Wan Y, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Tetrahedron Lett. 2017; 58: 652
    • 26g Lancefield CS, Ojo OS, Tran F, Westwood NJ. Angew. Chem. Int. Ed. 2015; 54: 258
  • 27 Xanthone (2a; 9H-Xanthen-9-one); Typical Procedure A15-mL Schlenk tube equipped with a magnetic stirrer bar was charged with xanthene (1a; 182 mg, 1.0 mmol) and DDQ (2.3 mg, 1 mol%). The air in the tube was replaced with O2 and the tube was sealed with a rubber plug. TBN (5.9 μL, 5 mol%), AcOH (12.0 mg, 20 mol%), and DCE (5.0 mL) were added. The Schlenk tube was placed in a dark box and illuminated with a 18 W blue LED. The mixture was stirred vigorously under an O2 balloon until the reaction was complete (GC). The mixture was then concentrated on a rotary evaporator, and the residue was purified by column chromatography (silica gel, PE–EtOAc) to give a white solid; yield: 194 mg (99%); mp 174–175 °C. 1H NMR (500 MHz, CDCl3): δ = 8.35–8.33 (m, 2 H), 7.73–7.70 (m, 2 H), 7.48 (d, J = 8.5 Hz, 2 H), 7.39–7.36 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 177.2, 156.2, 134.8, 126.7, 123.9, 121.9, 118.0. MS (EI): m/z (%): 196.11 (93) [M]+, 139.10 (100).
  • 28 Guo X, Zipse H, Mayr H. J. Am. Chem. Soc. 2014; 136: 13863