Synlett 2018; 29(15): 2019-2022
DOI: 10.1055/s-0037-1610549
letter
© Georg Thieme Verlag Stuttgart · New York

A Convenient Synthesis of Functionalized 2,3-Diazaspiro[4.4]nona-1,6,8-trienes

Issa Yavari*
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Jamil Sheykhahmadi
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Samira Bahemat
b   Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
,
Mohammad Reza Halvagar
b   Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
› Author Affiliations
Further Information

Publication History

Received: 09 May 2018

Accepted after revision: 08 July 2018

Publication Date:
08 August 2018 (online)


Abstract

A convenient Michael addition/cyclization sequence of alkyl isocyanide–acetylenic ester zwitterionic adducts with various pyrazolone derivatives, leading to the formation of dialkyl 6-(alkylamino)-1-methyl-4-oxo-3-phenyl-9-aryl-2,3-diazaspiro[4.4]nona-1,6,8-triene-7,8-dicarboxylates in moderate to good yields, is described. The structure of the target compounds was confirmed by an X-ray diffraction study.

Supporting Information

 
  • References and notes


    • For selected reviews, see:
    • 1a Chauhan P. Mahajan S. Enders D. Chem. Commun. 2015; 51: 12890
    • 1b Schmidt A. Dreger A. Curr. Org. Chem. 2011; 15: 1423
    • 1c Varvounis G. Adv. Heterocycl. Chem. 2009; 98: 143
    • 1d Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893

      For selected examples, see:
    • 2a Li J. -H. Wen H. Liu L. Du D. -M. Eur. J. Org. Chem. 2016; 2492
    • 2b Yang S. Shen L.-l. Kim Y.-J. Jeong J.-H. Org. Biomol. Chem 2016; 14: 623
    • 2c Yetra SR. Mondal S. Mukherjee S. Gonnade RG. Biju AT. Angew. Chem. Int. Ed. 2016; 55: 268
    • 2d Bao X. Wang B. Cui L. Zhu G. He Y. Qu I. Song Y. Org. Lett. 2015; 17: 5168

      For selected examples, see:
    • 3a Han B. Huang W. Ren W. He G. Wang J.-h. Peng C. Adv. Synth. Catal. 2015; 357: 561
    • 3b Li JH. Du DM. Chem. Asian J. 2014; 9: 3278
    • 3c Liang J. Chen Q. Liu L. Jiang X. Wang R. Org. Biomol. Chem. 2013; 11: 1441
    • 3d Zhang JX. Li NK. Liu ZM. Huang XF. Geng ZC. Wang XW. Adv. Synth. Catal. 2013; 355: 797
    • 3e Liu L. Zhong Y. Zhang P. Jiang X. Wang R. J. Org. Chem. 2012; 77: 10228
  • 4 Bondock S. Rabie R. Etman HA. Fadda AA. Eur. J. Med. Chem. 2008; 43: 2122
    • 6a Nicolaou KC. Snyder SA. Proc. Natl. Acad. Sci. USA 2004; 101: 11929
    • 6b Mohr JT. Krout MR. Stoltz BM. Nature 2008; 455: 323
    • 6c Sorensen EJ. Davies HM. L. Chem. Soc. Rev. 2009; 38: 2969
    • 7a Deng JC. Chan FW. Kuo CW. Cheng CA. Huang CY. Chuang SC. Eur. J. Org. Chem. 2012; 5738
    • 7b Zea A. Alba AN. R. Mazzanti A. Moyano A. Rios R. Org. Biomol. Chem. 2011; 9: 6519
    • 8a Han Y. Sheng YJ. Yan CG. Org. Lett. 2014; 16: 2654
    • 8b Gong H. Sun J. Yan CG. Synthesis 2014; 46: 2327
    • 8c Vuluga D. Legros J. Crousse B. Bonnet-Delpon D. Green Chem. 2009; 11: 156
    • 8d Tinarelli A. Righi P. Rosini G. Andreotti D. Profeta R. Spada S. Tetrahedron 2011; 67: 612
    • 9a Yavari I. Naeimabadi M. Sheykhahmadi J. Bahemmat S. Halvagar MR. ChemistrySelect 2018; 3: 11370
    • 9b Yavari I. Hojati M. Azad L. Halvagar MR. Synlett 2018; 26: 1024
    • 9c Diyanatizadeh MH. Yavari I. J. Sulfur Chem. 2016; 37: 54
    • 9d Yavari I. Nematpour M. Sodagar E. Monatsh. Chem. 2015; 146: 2135
    • 9e Yavari I. Mirzaei A. Moradi L. Khalili G. Tetrahedron Lett. 2010; 51: 396
  • 10 Typical Procedure for the Preparation of Compounds 4To a stirred mixture of 2 (1 mmol) and 3 (1.2 mmol) in dry toluene (3 mL) was added 1 (1.0 mmol). The mixture was heated at 80 °C for 4 h. After completion (TLC monitoring), the solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO2; n-hexane/EtOAc 4:1) to afford the products 4am.Dimethyl 6-(cyclohexylamino)-1-methyl-4-oxo-3,9-diphenyl-2,3-diazaspiro[4.4]nona-1,6,8-triene-7,8-dicarboxylate (4a)Yellow powder; yield: 0.38 g (70%); mp 142–144 °C. IR (KBr): 3443, 2930, 1725, 1658, 1588, 1450, 1351, 1253, 1209 cm−1. 1H NMR (500 MHz, CDCl3): δ = 0.88–0.91 (m, 2 H, CH2), 1.10–1.13 (m, 2 H, CH2), 1.22–1.31 (m, 2 H, CH2), 1.46–1.58 (m, 2 H, CH2), 1.61–1.79 (m, 2 H, CH2), 2.06 (s, 3 H, Me), 2.85 (br s, 1 H, N-CH), 3.71 (s, 3 H, MeO), 3.75 (s, 3 H, MeO), 7.16 (d, 3 J = 8.6 Hz, 2 H, Ar-H), 7.20 (t, 3 J = 8.7 Hz, 2 H, Ar-H), 7.20 (t, 3 J = 8.7 Hz, 1 H, Ar-H), 7.23 (t, 3 J = 7.4 Hz, 1 H, Ar-H), 7.41 (t, 3 J = 7.7 Hz, 2 H, Ar-H), 7.72 (d, 3 J = 8.5 Hz, 2 H, Ar-H), 8.29 (br s, 1 H, NH) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.1 (Me), 24.5 (CH2), 24.6 (CH2), 24.8 (CH2), 34.5 (CH2), 34.6 (CH2), 51.0 (MeO), 52.1 (MeO), 54.1 (N-CH), 73.1 (C), 100.7 (C), 119.3 (2 CH), 123.3 (C), 125.9 (CH), 127.5 (2 CH), 128.1 (CH), 128.6 (2 CH), 129.0 (2 CH), 131.9 (C), 137.3 (C), 138.8 (C), 157.2 (C), 161.6 (C), 165.4 (C=O), 166.5 (C=O), 168.0 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 513 (100) [M+], 482 (4), 399 (13), 367 (22), 340 (18), 312 (12), 232 (15), 129 (13), 105 (10), 77(20), 55 (25). Anal. Calcd for C30H31N3O5 (513.59): C, 70.16; H, 6.08; N, 8.18. Found: C, 70.44; H, 6.10; N 8.21.
  • 11 X-Ray Crystal Structure Determination of 4aThe X-ray diffraction measurement was carried out with a STOE IPDS 2T diffractometer with graphite-monochromated Mo-Kα radiation. A crystal suitable for X-ray analysis was obtained from EtOH solution, mounted on a glass fiber and used for data collection. Compound 4a crystallized in the monoclinic crystal system and P 21/c space group. For the unit cell a = 7.9800(16) Å, b = 12.750(3) Å, c = 26.360(5) Å, α = 90°, β = 94.07(3)°, γ = 90°, Z = 4, cell volume = 2675.2(10) Å3 and orientation matrixes for data collection were obtained by least-square refinement of the diffraction data from 4237 reflections for compound 4a. Diffraction data were collected in a series of ω scans in 1° oscillations and integrated by using the STOE X-AREA software package (see ref.13). The structure was solved by direct methods and subsequent difference Fourier maps and then refined on F 2 to final R 1 = 0.0508 and wR 2 (all data) = 0.1176 by a full-matrix least-squares procedure by using anisotropic displacement parameters. Atomic factors are from the International Tables for X-ray Crystallography. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. All refinements were performed with use of the X-STEP32, SHELXL-2014, and WinGX-2013.3 programs (see ref.14).
  • 12 CCDC-1822520 contains the supplementary crystallographic data for compound 4a in this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 13 X-AREA: Program for the Acquisition and Analysis of Data, Version 1.30; STOE & Cie GmbH: Darmstadt, 2005;

    • For details, see:
    • 14a Farrugia LJ. J. Appl. Cryst. 1999; 32: 837
    • 14b Allen FH. Johnson O. Shields GP. Smith BR. Towler M. J. Appl. Cryst. 2004; 37: 335
    • 14c Macrae CF. Edgington PR. McCabe P. Pidcock E. Shields GP. Taylor R. Towler M. van der Streek J. J. Appl. Cryst. 2006; 39: 453
    • 14d Burnett M. N., Johnson C. K.; ORTEP-III Report ORNL-6895; Oak Ridge National Laboratory: Tennessee USA, 1996;
    • 14e Spek AL. J. Appl. Cryst. 2003; 36: 7
    • 14f Sheldrick GM. Acta Crystallogr. Sect. A 2008; 64: 112