Synlett 2018; 29(11): 1517-1519
DOI: 10.1055/s-0036-1592001
letter
© Georg Thieme Verlag Stuttgart · New York

A Biomimetic Synthesis of des-Hydroxy Paecilospirone

Zhen-Gao Feng
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA   Email: pettus@chem.ucsb.edu
,
G. Leslie Burnett
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA   Email: pettus@chem.ucsb.edu
,
Thomas R. R. Pettus*
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA   Email: pettus@chem.ucsb.edu
› Author Affiliations
T.R.R.P. is grateful for past financial support from the National Science Foundation (CHE-0806356) for this work.
Further Information

Publication History

Received: 07 March 2018

Accepted: 02 April 2018

Publication Date:
09 May 2018 (online)


Dedicated to purveyors of truth: Tomáš Hudlický, Richard H. Schlessinger, Samuel J. Danishefsky

Abstract

The carbon framework of des-hydroxy paecilospirone was rapidly synthesized using a biomimetic approach whereby an enol ether and an ortho-quinone methide (o-QM), each derived from the same lactone, were combined to arrive at the complete carbon skeleton of paecilospirone.

Supporting Information

 
  • References and Notes

  • 1 Namikoshi M. Kobayashi H. Yoshimoto T. Meguro S. Chem. Lett. 2000; 308
  • 3 Buehler CA. Powers TA. Michels JG. J. Am. Chem. Soc. 1944; 66: 417
  • 4 Okazoe T. Takai K. Oshima K. Utimoto K. J. Org. Chem. 1987; 52: 4410
  • 5 Takai K. Kakiuchi T. Kataoka Y. Utimoto K. J. Org. Chem. 1994; 59: 2668
  • 6 Hoffmann RW. Bovicelli P. Synthesis 1990; 657
  • 7 Spaggiari A. Vaccari D. Davoli P. Torre G. Prati F. J. Org. Chem. 2007; 72: 2216
  • 8 Green JC. Burnett GL. Pettus TR. R. Pure Appl. Chem. 2012; 84: 1621
  • 9 Bai W.-J. David JG. Feng Z.-G. Weaver MG. Wu K.-L. Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
  • 10 Bal BS. Childers WE. Pinnick HW. Tetrahedron 1981; 37: 2091
  • 11 Togo H. Muraki T. Hoshina Y. Yamaguchi K. Yokoyama M. J. Chem. Soc., Perkin Trans. 1 1997; 787
  • 12 Togo H. Muraki T. Yokoyama M. Tetrahedron Lett. 1995; 36: 7089
  • 13 Davies DI. Waring C. J. Chem. Soc. C 1968; 2337
  • 14 Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
  • 15 Compound 5: 1H NMR (500 MHz, CDCl3) δ = 7.30–7.24 (m, 2 H), 7.16 (t, J = 7.9 Hz, 1 H), 6.95–6.90 (m, 2 H), 6.80 (d, J = 7.9 Hz, 1 H), 5.30 (s, 1 H), 5.25 (d, J = 12.8 Hz, 1 H), 5.07 (d, J = 12.8 Hz, 1 H), 3.30 (dd, J = 17.6, 5.5 Hz, 1 H), 3.01–2.84 (m, 3 H), 2.36–2.25 (m, 1 H), 1.77–1.67 (m, 2 H), 1.46–1.07 (m, 22 H), 0.87 (t, J = 7.0 Hz, 3 H), 0.83 (t, J = 7.1 Hz, 3 H). 13C NMR (126 MHz, CDCl3) δ = 204.8, 153.5, 150.0, 141.0, 138.2, 129.8, 126.9, 126.7, 122.4, 121.4, 120.6, 115.7, 114.5, 111.6, 70.6, 41.9, 38.2, 31.8, 31.8, 30.6, 29.6, 29.4, 29.4, 29.2, 29.1, 26.8, 26.1, 24.6, 22.7, 22.6, 14.1, 14.1. IR νmax (neat): 3393, 2925, 2854, 1670, 1607, 1455, 1287, 1258, 927. HRMS (ESI+) calcd for C32H44O4Na [M+Na]+: 515.3137; found: 515.3126