Synlett 2018; 29(04): 473-476
DOI: 10.1055/s-0036-1591727
letter
© Georg Thieme Verlag Stuttgart · New York

An Improved Route to Purin-6-yl Magnesium Halides by Metal–Halogen Exchange in Dichloromethane

Malcolm R. Gordon
Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany   Email: stephen.lindell@bayer.com
,
Stephen D. Lindell*
Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany   Email: stephen.lindell@bayer.com
,
Daniel Richards
Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany   Email: stephen.lindell@bayer.com
› Author Affiliations
We thank the European Commission for a Marie Curie Fellowship for M. Gordon (FP7-PEOPLE-2012-ITN, Project: ECHONET ‘Expanding Capability in Heterocyclic Organic Synthesis’, No. 316379).
Further Information

Publication History

Received: 26 September 2017

Accepted after revision: 24 October 2017

Publication Date:
11 December 2017 (online)


Abstract

Treatment of a solution of 9-benzyl or 9-phenyl 6-iodopurine in dichloromethane with an ethereal solution of ethylmagnesium bromide at ambient temperature generates the corresponding purin-6-yl magnesium halides which react with aldehydes to give carbinols in 55–80% yield. Performing the same procedure with THF as solvent gave carbinols in much lower yields (≤15%).

Supporting Information

 
  • References and Notes

    • 1a Knochel P. Dohle W. Gommermann N. Kneisel FF. Kopp F. Korn T. Sapountzis I. Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
    • 1b Ila H. Baron O. Wagner AJ. Knochel P. Chem. Lett. 2006; 35: 2
    • 1c Ila H. Baron O. Wagner AJ. Knochel P. Chem. Commun. 2006; 583
    • 1d Knochel P. Schade MA. Bernhardt S. Manolikakes G. Metzger A. Piller FM. Rohbogner CJ. Mosrin M. Beilstein J. Org. Chem. 2011; 7: 1261
  • 2 El Borai M. Moustafa AH. Anwar M. Ghattas AG. Croat. Chem. Acta 1981; 54: 211
    • 3a Turner RM. Lindell SD. Ley SV. J. Org. Chem. 1991; 56: 5739
    • 3b Turner RM. Lindell SD. Ley SV. Synlett 1993; 748
    • 3c Carver DS. Lindell SD. Saville-Stones EA. Tetrahedron 1997; 53: 14481
    • 4a Andresen BM. Couturier B. Cronin B. D’Occhio MD. Ewing MG. Hawkins JM. Jasys VJ. LaGreca SD. Lyssikatos JP. Moraski G. Ng K. Raggon JW. Stewart AM. Tickner DL. Tucker JL. Urban FJ. Vazquez E. Wei L. Org. Process Res. Dev. 2004; 8: 643
    • 4b Kuethe JT. Childers KG. Peng Z. Journet M. Humphrey GR. Vickery T. Bachert D. Lam TT. Org. Process Res. Dev. 2009; 13: 576
  • 5 Turner RM. PhD Thesis. University of London; London: 1993
    • 6a Leonard NJ. Bryant JD. J. Org. Chem. 1979; 44: 4612
    • 6b Therkelsen FD. Rottländer M. Thoruo N. Pedersen EB. Org. Lett. 2004; 6: 1991
    • 7a Prasad AS. B. Stevenson TM. Citineni JR. Nyzam V. Knochel P. Tetrahedron 1997; 53: 7237
    • 7b Zimdars S. Mollat du Jourdin X. Crestey F. Carell T. Knochel P. Org. Lett. 2011; 13: 792
    • 8a Tobrman T. Dvořák D. Org. Lett. 2003; 5: 4289
    • 8b Tobrman T. Dvořák D. Org. Lett. 2006; 8: 1291
  • 9 McKenzie TC. Spstein JW. J. Org. Chem. 1982; 47: 4881
  • 10 Tanji K.-I. Higashino T. Chem. Pharm. Bull. 1988; 36: 1935
  • 11 Kelly JL. Krochmal MP. Linn JA. McLean EW. Soroko FE. J. Med. Chem. 1988; 31: 606
  • 12 Greenberg SM. Ross LO. Robins RK. J. Org. Chem. 1959; 24: 1314
  • 13 Reactions with ketones proceed in much lower yields. For example, the purin-6-yl magnesium halide derived from 2 reacts with acetophenone to give the corresponding carbinol in 12% yield. Efforts are currently under way to try and improve this reaction.
  • 14 General Experimental Procedure for the Metal–Halogen Exchange in Dichloromethane Dry CH2Cl2 (10 mL) was added to the iodopurine 1 9 or 2 10 (1.0 mmol) under an inert atmosphere of dry argon, and the mixture was stirred at rt until the purine was completely dissolved. A solution of EtMgBr (1.2 eq, 3 M in Et2O, 0.4 mL) was then instilled into the solution over a period of 30 s. The resulting mixture was stirred at rt for 15 min, and then neat aldehyde (3 mmol) was instilled into the mixture over 30 s, and the reaction mixture was stirred at rt overnight (16 h). The reaction was quenched with sat. aq NH4Cl (5 mL), and then diluted with sat. aq NaHCO3 (15 mL). The organic phase was separated off, and the aqueous phase extracted thrice with CH2Cl2 (20 mL). The combined organic phases were dried over Mg2SO4, filtered, and concentrated in vacuo at 40 °C. The crude product was purified by column chromatography to afford pure carbinols 3af and 4af (see Table 1 for yields).
  • 15 Characterization Data The 1H NMR and 13C NMR spectra for compounds 3ad were identical to those reported previously in the literature.8 (9-Benzyl-9H-purin-6-yl)(cyclopropyl)methanol (3e) Colourless solid (223 mg, 0.80 mmol, 80% theory). 1H NMR (600 MHz, CDCl3): δ = 0.45–0.55 (m, 2 H), 0.57–0.62 (m, 1 H), 0.73–0.78 (m, 1 H), 1.39–1.45 (m, 1 H), 4.91 (d, J = 6.8 Hz, 1 H), 5.47 (s, 2 H), 7.32–7.39 (m, 5 H), 8.10 (s, 1 H), 8.99 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 2.3, 2.8, 17.8, 47.7, 72.6, 128.2, 129.0, 129.4, 130.4, 134.9, 144.8, 151.6, 151.8, 161.7 ppm. IR (solid): νm = 3309, 3114, 3054, 2998, 2715, 1799, 1582, 1440, 1281, 1145, 1023, 953 cm–1. HRMS (ESI/QTOF): m/z [MH]+ calcd for C16H17N4O: 281.1402; Found: 281.1396. 1-(9-Benzyl-9H-purin-6-yl)butan-1-ol (3f) Colourless solid (155 mg, 0.55 mmol, 55% theory). 1H NMR (600 MHz, CDCl3): δ = 0.95 (t, J = 7.4 Hz, 3 H), 1.47–1.59 (m, 2 H), 1.83–1.90 (m, 1 H), 2.06–2.13 (m, 1 H), 4.95 (br s, 1 H), 5.33 (dd, J = 4.1, 8.3 Hz, 1 H), 5.47 (s, 2 H), 7.31–7.39 (m, 5 H), 8.09 (s, 1 H), 8.98 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 14.1, 18.8, 39.9, 47.7, 70.6, 128.1, 128.9, 129.4, 130.2, 134.9, 144.5, 151.6, 162.4 ppm. IR (solid): νm = 3224, 3069, 2955, 2872, 1877, 1587, 1455, 1403, 1237, 1153, 939 cm–1. HRMS (ESI/QTOF) m/z [MH]+ calcd for C16H19N4O: 283.1559; found: 283.1559. Phenyl(9-phenyl-9H-purin-6-yl)methanol (4a) Colourless solid (227 mg, 0.75 mmol, 75% theory). 1H NMR (600 MHz, CDCl3): δ = 5.47 (br s, 1 H), 6.48 (s, 1 H), 7.24–7.28 (m, 1 H), 7.32–7.36 (m, 2 H), 7.47–7.51 (m, 1 H), 7.57–7.61 (m, 2 H), 7.66–7.70 (m, 4 H), 8.35 (s, 1 H), 9.04 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 72.6, 123.7, 127.0, 128.1, 128.7, 128.9, 130.1, 130.9, 134.1, 141.8, 144.0, 151.5, 152.3, 161.1 ppm. (IR, solid): νm = 3438, 3088, 2893, 1595, 1451, 1378, 1182, 1090, 940 cm–1. HRMS (ESI/QTOF): m/z [MH]+ calcd for C18H15N4O 303.1246; found: 303.1238. (9-Phenyl-9H-purin-6-yl)[4-(trifluoromethyl)phenyl]-methanol (4b) Colourless solid (268 mg, 0.72 mmol, 72% theory). 1H NMR (600 MHz, CDCl3): δ = 5.08 (br s, 1 H), 6.55 (s, 1 H), 7.49–7.53 (m, 1 H), 7.58–7.62 (m, 4 H), 7.66–7.70 (m, 2 H), 7.57–7.61 (d, J = 8.4 Hz, 2 H), 8.38 (s, 1 H), 9.05 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 71.9, 123.8, 125.6 (q, J C–F = 3.2 Hz), 127.3, 129.1 (q, J C–F = 33.5 Hz), 130.2, 130.4, 130.8, 131.3, 134.0, 144.4, 145.5, 151.7, 152.1, 160.1 ppm. (IR, solid): νm = 3293, 3115, 1598, 1572, 1414, 1404, 1179, 1070, 894 cm–1. HRMS (ESI/QTOF): m/z [MH]+ calcd for C19F3H14N4O: 371.1120; found: 371.1103. Benzo[d][1,3]dioxol-5-yl(9-phenyl-9H-purin-6-yl)methanol (4c) Colourless solid (233 mg, 0.67 mmol, 67% theory). 1H NMR (600 MHz, CDCl3): δ = 5.18 (br s, 1 H), 5.89 (d, J = 7.9 Hz, 2 H), 6.40 (s, 1 H), 6.78 (d, J = 7.9 Hz, 1 H), 7.12 (d, J = 1.6 Hz, 1 H), 7.16 (dd, J = 1.6, 7.9 Hz, 1 H), 7.48–7.51 (m, 1 H), 7.58–7.62 (m, 2 H), 7.66–7.70 (m, 2 H), 8.37 (s, 1 H), 9.04 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 72.2, 101.2, 107.5, 108.5, 120.8, 123.8, 129.0, 130.2, 130.7, 134.0, 135.4, 144.3, 147.6, 148.0, 151.7, 152.0, 161.0 ppm. (IR, solid): νm = 3205, 3063, 2789, 1869, 1590, 1499, 1397, 1377, 1208, 1045, 942 cm–1. HRMS (ESI/QTOF): m/z [MH]+ calcd for C19H15N4O3: 347.1144; found: 347.1129. 2-Methyl-1-(9-phenyl-9H-purin-6-yl)propan-1-ol (4d) Colourless solid (163 mg, 0.61 mmol, 61% theory). 1H NMR (600 MHz, CDCl3): δ = 0.85 (d, J = 6.8 Hz, 3 H), 1.16 (d, J = 6.8 Hz, 3 H), 2.49–2.58 (m, 1 H), 4.64 (br s, 1 H), 5.25 (d, J = 4.3 Hz, 1 H), 7.49–7.53 (m, 1 H), 7.59–7.63 (m, 2 H), 7.71–7.74 (m, 2 H), 8.38 (s, 1 H), 9.03 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 15.9, 20.0, 34.7, 75.2, 123.8, 128.9, 130.2, 131.3, 134.3, 143.3, 151.1, 152.3, 162.5 ppm. (IR, solid): νm = 3234, 3055, 2969, 1935, 1751, 1592, 1572, 1407, 1324, 1185, 1035, 920 cm–1. HRMS (ESI/QTOF): m/z [MH]+ calcd for C15H17N4O 269.1402; found: 269.1397. Cyclopropyl(9-phenyl-9H-purin-6-yl)methanol (4e) Colourless solid (198 mg, 0.74 mmol, 74% theory). 1H NMR (600 MHz, CDCl3): δ = 0.49–0.58 (m, 2 H), 0.61–0.65 (m, 1 H), 0.78–0.83 (m, 1 H), 1.43–1.49 (m, 1 H), 4.55 (br s, 1 H), 4.99 (d, J = 6.9 Hz, 1 H), 7.49–7.52 (m, 1 H), 7.59–7.63 (m, 2 H), 7.71–7.74 (m, 2 H), 8.38 (s, 1 H), 9.02 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ 2.4, 2.7, 17.9, 72.7, 123.8, 128.9, 130.2, 131.1, 134.2, 143.8, 151.4, 152.3, 162.3 ppm. (IR, solid): νm = 3102, 2879, 1939, 1892, 1788, 1598, 1515, 1398, 1342, 1161, 916 cm–1. HRMS (ESI/QTOF): m/z [MH]+ calcd for C15H15N4O: 267.1246; found: 267.1244. 1-(9-Phenyl-9H-purin-6-yl)butan-1-ol (4f) Colourless solid (147 mg, 0.55 mmol, 55% theory). 1H NMR (600 MHz, CDCl3): δ = 0.98 (t, J = 7.4 Hz, 3 H), 1.48–1.63 (m, 2 H), 1.88–1.94 (m, 1 H), 2.12–2.19 (m, 1 H), 4.36 (br s, 1 H), 5.39 (dd, J = 4.1, 8.2 Hz, 1 H), 7.48–7.53 (m, 1 H), 7.59–7.63 (m, 2 H), 7.71–7.74 (m, 2 H), 8.37 (s, 1 H), 9.00 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 14.1, 18.8, 39.9, 70.6, 123.8, 129.0, 130.2, 130.9, 134.2, 143.7, 151.2, 152.1, 163.0 ppm. (IR, solid): νm = 3220, 2929, 1930, 1767, 1595, 1510, 1403, 1334, 1259, 1117, 1037, 934 cm–1. HRMS (ESI/QTOF): m/z [MH]+ calcd for C15H17N4O: 269.1402; found: 269.1398.