Synlett 2024; 35(09): 1001-1006
DOI: 10.1055/a-2201-7326
cluster
Chemical Synthesis and Catalysis in Germany

Alkene versus Aryl Chlorination in Asymmetric Hypervalent Iodine Catalysis: A Case Study

Andreas M. Arnold
a   Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
b   Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
,
Julia Binder
a   Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
b   Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
,
Martin Kretzschmar
a   Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
,
Tanja Gulder
a   Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
b   Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
› Author Affiliations
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, GU 1134/5). A.M.A. thanks the Fonds der Chemischen Industrie for a PhD Fellowship.


Abstract

Hypervalent λ3-iodanes have become a prominent tool for halofunctionalizations of alkenes. Despite many examples of asymmetric fluorinations reported lately, the corresponding enantioselective chlorination reactions using iodoresorcinol-based catalysts are significantly less developed, with only one example known to date. Here, we show how competing aromatic chlorination of the iodoarene catalyst is a significant obstacle in these transformations, hinting towards a conceptual issue with this well-established catalyst class for enantioselective chlorinations. Consequently, the reaction conditions and the catalyst design must be adapted to facilitate an effective chirality transfer. Hence, attention should be paid when selecting the oxidizing agent, the stoichiometry, and careful reaction analysis must be conducted to identify the factual catalytically active species.

Supporting Information



Publication History

Received: 05 October 2023

Accepted after revision: 30 October 2023

Accepted Manuscript online:
30 October 2023

Article published online:
06 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Satheeshkumar RK, Sai PP, Gowravaram S, Reddy BV. S. Eur. J. Org. Chem. 2019; 1687
    • 2b Chen C, Wang X, Yang T. Front. Chem. 2020; 8: 849
    • 2c Rahman AU, Zarshad N, Zhou P, Yang W, Li G, Ali A. Front. Chem. 2020; 8: 523
    • 2d Xu Y, Hu JT, Yan J. Chin. Chem. Lett. 2012; 23: 891
    • 2e Yakura T, Fujiwara T, Yamada A, Nambu H. Beilstein J. Org. Chem. 2018; 14: 971
    • 2f Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
    • 3a Uyanik M, Ishihara K. Chem. Commun. 2009; 2086
    • 3b Ballaschk F, Kirsch SF. Green Chem. 2019; 21: 5896
    • 3c Thottumkara AP, Bowsher MS, Vinod TK. Org. Lett. 2005; 7: 2933
    • 4a Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
    • 4b Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 4c Quideau S, Pouységu L, Peixoto PA, Deffieux D. Phenol Dearomatization with Hypervalent Iodine Reagents. In Hypervalent Iodine Chemistry Topics in Current Chemistry, Vol. 373. Wirth T. Springer; Cham: 2016: 25-74
    • 5a Tohma H, Kita Y. Adv. Synth. Catal. 2004; 346: 111
    • 5b Murphy GK, Gulder T. Hypervalent Iodine Fluorination for Preparing Alkyl Fluorides (Stoichiometrically and Catalytically). In Fluorination. Hu J, Umemoto T. Springer; Singapore: 2018: 1-32
    • 5c Du Y, Zhang B, Li X, Guo B. Chem. Commun. 2020; 56: 14119
    • 6a Hypervalent Iodine Chemistry. In Topics in Current Chemistry, Vol. 373. Wirth T. Springer; Cham: 2016
    • 6b Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2013
    • 6c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 6d Silva JL. F, Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
    • 6e Arnold AM, Ulmer A, Gulder T. Chem. Eur. J. 2016; 22: 8728
    • 7a Parra A. Chem. Rev. 2019; 119: 12033
    • 7b Yusubov MS, Zhdankin VV. Resource-Efficient Technologies 2015; 1: 49
    • 7c Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 7d Ghosh S, Pradhan S, Chatterjee I. Beilstein J. Org. Chem. 2018; 14: 1244
    • 8a Li Y, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
    • 8b Hari DP, Caramenti P, Waser J. Acc. Chem. Res. 2018; 51: 3212
    • 8c Boelke A, Finkbeiner P, Nachtsheim BJ. Beilstein J. Org. Chem. 2018; 14: 1263
    • 8d Ghosh MK, Rajkiewicz AA, Kalek M. Synthesis 2019; 51: 359
    • 8e Han Z.-Z, Zhang C.-P. Adv. Synth. Catal. 2020; 362: 4256
    • 8f Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134
    • 9a Kong W, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
    • 9b Duddupudi AL, Pandey P, Vo H, Welsh CL, Doerksen RJ, Cuny GD. J. Org. Chem. 2020; 85: 7549
    • 9c Jiang X, Zhu W, Yang L, Zheng Z, Yu C. Eur. J. Org. Chem. 2019; 2268
    • 9d Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
    • 9e Geary GC, Hope EG, Stuart AM. Angew. Chem. Int. Ed. 2015; 54: 14911
    • 9f Binder J, Biswas A, Gulder T. Chem. Sci. 2023; 14: 3907
  • 11 Jia K, Zhang F, Huang H, Chen Y. J. Am. Chem. Soc. 2016; 138: 1514
    • 12a Merritt EA, Olofsson B. Synthesis 2011; 517
    • 12b Stockhammer L, Schörgenhumer J, Mairhofer C, Waser M. Eur. J. Org. Chem. 2021; 82
    • 12c Lex TR, Swasy MI, Whitehead DC. J. Org. Chem. 2015; 80: 12234
    • 12d Kiefl GM, Gulder T. J. Am. Chem. Soc. 2020; 142: 20577
    • 13a Woerly EM, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
    • 13b Haubenreisser S, Wöste TH, Martínez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
    • 13c Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T. Angew. Chem. Int. Ed. 2010; 49: 7068
    • 13d Sharma HA, Mennie KM, Kwan EE, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 16090
    • 13e Molnár IG, Gilmour R. J. Am. Chem. Soc. 2016; 138: 5004
    • 13f Scheidt F, Schäfer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 16431
    • 13g Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 13h Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
    • 13i Kong W, Feige P, de Haro T, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 2469
    • 13j Romero RM, Souto JA, Muñiz K. J. Org. Chem. 2016; 81: 6118
    • 13k Eisenberger P, Gischig S, Togni A. Chem. Eur. J. 2006; 12: 2579
  • 14 Roberts I, Kimball GE. J. Am. Chem. Soc. 1937; 59: 947
    • 15a Cresswell AJ, Eey ST.-C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
    • 15b Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
    • 15c Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
    • 16a Ulmer A, Brunner C, Arnold AM, Pöthig A, Gulder T. Chem. Eur. J. 2016; 22: 3660
    • 16b Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
    • 16c Stodulski M, Goetzinger A, Kohlhepp SV, Gulder T. Chem. Commun. 2014; 50: 3435
    • 16d Yan T, Zhou B, Xue X.-S, Cheng J.-P. J. Org. Chem. 2016; 81: 9006
    • 16e Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
  • 17 Stodulski M, Kohlhepp SV, Raabe G, Gulder T. Eur. J. Org. Chem. 2016; 2170
    • 18a Fabry DC, Stodulski M, Hoerner S, Gulder T. Chem. Eur. J. 2012; 18: 10834
    • 18b Braddock DC, Cansell G, Hermitage SA. Chem. Commun. 2006; 2483
  • 19 Ulmer A, Stodulski M, Kohlhepp SV, Patzelt C, Pöthig A, Bettray W, Gulder T. Chem. Eur. J. 2015; 21: 1444
  • 20 Patzelt C, Pöthig A, Gulder T. Org. Lett. 2016; 18: 3466
  • 21 Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Chem. Soc. Rev. 2022; 51: 8102
    • 22a Li X, Chen P, Liu G. Beilstein J. Org. Chem. 2018; 14: 1813
    • 22b Muniz K. Acc. Chem. Res. 2018; 51: 1507
    • 22c Muñiz K, Barreiro L, Romero RM, Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
    • 22d Lee JH, Choi S, Hong KB. Molecules 2019; 24: 2634
    • 22e Claraz A, Masson G. Org. Biomol. Chem. 2018; 16: 5386
    • 22f Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2020; 59: 15069
    • 22g Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
  • 23 Sarie JC, Neufeld J, Daniliuc CG, Gilmour R. ACS Catal. 2019; 9: 7232
  • 24 Tania Tania, Molino A, Sharp-Bucknall L, Wilson DJ. D, Dutton JL. Org. Biomol. Chem. 2022; 20: 8454
  • 25 Starting material (200 μmol, 1.0 equiv), 101 mg CsCl (600 μmol, 3.0 equiv), and 78.0 mg Selectfluor (220 μmol, 1.1 equiv) were dissolved in 900 μL abs. DCM together with 190 μL HFIP. The solution was cooled to –20 °C, and the catalyst was added. Upon completion, 2 mL sat. aq. Na2S2O3 was added, and the mixture was poured into brine and extracted with DCM (2 × 10 mL). The combined organic layers were dried over MgSO4, and the solvent was removed under reduced pressure.
    • 26a Podgoršek A, Iskra J. Molecules 2010; 15: 2857
    • 26b Zielinska A, Skulski L. Tetrahedron Lett. 2004; 45: 1087