Synlett 2024; 35(04): 423-426
DOI: 10.1055/a-2102-8014
cluster
11th Singapore International Chemistry Conference (SICC-11)

Toward the Total Synthesis of Schinortriterpenoids: Construction of the All-cis-Substituted Cyclopropane Unit

Ryotaro Yagita
,
Kazuhiro Irie
,
Chihiro Tsukano
This work was financially supported by a grant from JSPS KAKENHI (Grant Number JP21H02131) to C.T. This work was also supported by JST, the establishment of university fellowships towards the creation of science technology innovation, Grant Number JPMJFS2123.


Abstract

As a step toward a total synthesis of pre-schisanartanins and arisanlactones, we successfully synthesized a right fragment of Schisandra nortriterpenoids bearing a distorting all-cis-substituted cyclopropane from a chiral lactone. The key step in this synthesis was the diastereoselective construction of an all-cis-substituted cyclopropane through a Negishi coupling using an amide as a directing group.

Supporting Information



Publication History

Received: 09 May 2023

Accepted after revision: 30 May 2023

Accepted Manuscript online:
30 May 2023

Article published online:
10 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Xiao W.-L, Li R.-T, Huang S.-X, Pu J.-X, Sun H.-D. Nat. Prod. Rep. 2008; 25: 871
    • 1b Shi Y.-M, Xiao W.-L, Pu J.-X, Sun H.-D. Nat. Prod. Rep. 2015; 32: 367
    • 2a Xiao Q, Ren W.-W, Chen Z.-X, Li TW.-Y, Ye Q.-D, Gong J.-X, Meng F.-K, You L, Liu Y.-F, Zhao M.-Z, Xu L.-M, Shan Z.-H, Shi Y, Tang Y.-F, Chen J.-H, Yang Z. Angew. Chem. Int. Ed. 2011; 50: 7373
    • 2b Li J, Yang P, Yao M, Deng J, Li A. J. Am. Chem. Soc. 2014; 136: 16477
    • 2c Goh SS, Chaubet G, Gockel B, Cordonnier M.-CA, Baars H, Phillips AW, Anderson EA. Angew. Chem. Int. Ed. 2015; 54: 12618
    • 2d You L, Liang X.-T, Xu L.-M, Wang Y.-F, Zhang J.-J, Su Q, Li Y.-H, Zhang B, Yang S.-L, Chen J.-H, Yang Z. J. Am. Chem. Soc. 2015; 137: 10120
    • 2e Wang L, Wang H, Li Y, Tang P. Angew. Chem. Int. Ed. 2015; 54: 5732
    • 2f Yang P, Yao M, Li J, Li Y, Li A. Angew. Chem. Int. Ed. 2016; 55: 6964
    • 2g Xu L.-M, You L, Shan Z.-H, Yu R.-C, Zhang B, Li Y.-H, Shi Y, Chen J.-H, Yang Z. Chem. Asian J. 2016; 11: 1406
    • 2h Zhang J.-J, You L, Wang Y.-F, Li Y.-H, Liang X.-T, Zhang B, Yang S.-L, Su Q, Chen J.-H, Yang Z. Chem. Asian J. 2016; 11: 1414
    • 2i Liang X.-T, You L, Li Y.-H, Yu H.-X, Chen J.-H, Yang Z. Chem. Asian J. 2016; 11: 1425
    • 2j Liu D.-D, Sun T.-W, Wang K.-Y, Lu Y, Zhang S.-L, Li Y.-H, Jiang Y.-L, Chen J.-H, Yang Z. J. Am. Chem. Soc. 2017; 139: 5732
    • 2k Han Y.-X, Jiang Y.-L, Li Y, Yu H.-X, Tong B.-Q, Niu Z, Zhou S.-J, Liu S, Lan Y, Chen J.-H, Yang Z. Nat. Commun. 2017; 8: 14233
    • 2l Wang H, Zhang X, Tang P. Chem. Sci. 2017; 8: 7246
    • 2m Chaubet G, Goh SS, Mohammad M, Gockel B, Cordonnier M.-CA, Baars H, Phillips AW, Anderson EA. Chem. Eur. J. 2017; 23: 14080
    • 2n Ma B, Zhao Y, He C, Ding H. Angew. Chem. Int. Ed. 2018; 57: 15567
    • 2o Wang K.-Y, Liu D.-D, Sun T.-W, Lu Y, Zheng S.-L, Li Y.-H, Han Y.-X, Liu H.-Y, Peng C, Wang Q.-Y, Chen J.-H, Yang Z. J. Org. Chem. 2018; 83: 6907
    • 2p Mohammad M, Chintalapudi V, Carney JM, Mansfield SJ, Sanderson P, Christensen KE, Anderson EA. Angew. Chem. Int. Ed. 2019; 58: 18177
    • 2q Yang Z. Acc. Chem. Res. 2019; 52: 480
    • 2r Jiang Y.-L, Yu H.-X, Li Y, Qu P, Han Y.-X, Chen J.-H, Yang Z. J. Am. Chem. Soc. 2020; 142: 573
    • 2s Wang Y, Chen B, He X, Gui J. J. Am. Chem. Soc. 2020; 142: 5007
    • 2t Yang P, Li J, Sun L, Yao M, Zhang X, Xiao W.-L, Wang J.-H, Tian P, Sun H.-D, Puno P.-T, Li A. J. Am. Chem. Soc. 2020; 142: 13701
    • 3a Yasui M, Ota R, Tsukano C, Takemoto Y. Nat. Commun. 2017; 8: 674
    • 3b Tsukano C, Yagita R, Heike T, Mohammed TA, Nishibayashi K, Irie K, Takemoto Y. Angew. Chem. Int. Ed. 2021; 60: 23106
    • 4a Huang S.-X, Li R.-T, Liu J.-P, Lu Y, Chang Y, Lei C, Xiao W.-L, Yang L.-B, Zheng Q.-T, Sun H.-D. Org. Lett. 2007; 9: 2079
    • 4b Cheng Y.-B, Liao T.-C, Lo Y.-W, Chen Y.-C, Kuo Y.-C, Chen S.-Y, Chien C.-T, Hwang T.-L, Shen Y.-C. J. Nat. Prod. 2010; 73: 1228
    • 4c Zhou M, Peng X.-G, Zhou J, Liu Y, Meng X, Ruan H.-L. Phytochemistry 2020; 177: 112448
    • 4d Song J, Liu Y, Zhou M, Cao H, Peng X.-G, Liang J.-J, Zhao X.-Y, Xiang M, Ruan H.-L. Org. Lett. 2017; 19: 1196
    • 4e Song J, Zhou M, Zhou J, Liang J.-J, Peng X.-G, Liu J, Ruan H.-L. Org. Lett. 2018; 20: 2499
  • 5 Yagita R, Irie K, Tsukano C. Eur. J. Org. Chem. 2021; 2021: 4269
  • 6 Yasui M, Ota R, Tsukano C, Takemoto Y. Org. Lett. 2018; 20: 7656
  • 7 Cossy J, Blanchard N, Hamel C, Meyer C. J. Org. Chem. 1999; 64: 2608
  • 8 Sekiyama T, Hatsuya S, Tanaka Y, Uchiyama M, Ono N, Iwayama S, Oikawa M, Suzuki K, Okunishi M, Tsuji T. J. Med. Chem. 1998; 41: 1284
  • 9 Kalvet I, Sperger T, Scattolin T, Magnin G, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 7078
  • 10 Compound (–)-12 i-Pr2NH (0.600 mL, 4.27 mmol) was added to a 1 M solution of Bu2Mg in heptane (4.53 mL, 4.53 mmol) at 0 °C under N2, and the solution was warmed to 50 °C and stirred for 10 min. The solution was cooled to RT and a solution of 6 (281 mg, 1.23 mmol) in anhyd THF (4.00 mL) was added. The resulting mixture was warmed to 70 °C and stirred for 3 h, then cooled to 0 °C. A 1 M solution of ZnCl2 in THF (4.63 mL, 4.63 mmol) was added, and the resultant mixture was stirred for 20 min at 0 °C. To the resulting solution were added a solution of [Pd(μ-I)PtBu3]2 (117 mg, 0.134 mmol) in anhyd toluene (4.00 mL) and 2-bromopropene (0.450 mL, 5.17 mmol). The mixture was warmed to 70 °C and stirred for 19 h. The reaction was then quenched with sat. aq NH4Cl, and the mixture was extracted with EtOAc (×2). The organic layer was washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 20–50% EtOAc–hexane) to give a brown oil; yield: 290 mg (88%); [α]D 17 –54.1 (c 0.480, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.82 (1 H, s), 4.60 (dd, J = 28.2, 6.4 Hz, 2 H), 4.42 (s, 1 H), 4.11 (dd, J = 11.2, 4.2 Hz, 1 H), 3.71–3.61 (m, 2 H), 3.47–3.38 (m, 1 H), 3.32 (s, 3 H), 3.34–3.23 (m, 2 H), 1.88 (s, 3 H), 1.57 (d, J = 9.2 Hz, 1 H), 1.38 (ddd, J = 13.6, 9.5, 4.2 Hz, 1 H), 1.34 (s, 3 H), 1.21 (t, J = 7.2 Hz, 3 H), 1.10 (t, J = 7.1 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 170.5, 140.9, 110.1, 96.6, 64.3, 55.1, 41.8, 38.5, 35.5, 31.0, 30.2, 26.0, 26.0, 13.9, 12.2. HRMS (FAB): m/z [M + H]+ calcd for C15H28NO3: 270.2069; found: 270.2071.
  • 11 Osborn JA, Jardine FH, Young JF, Wilkinson G. J. Chem. Soc. A 1966; 1711
  • 12 Song JI, An DK. Chem. Lett. 2007; 36: 886
    • 13a Ohira S. Synth. Commun. 1989; 19: 561
    • 13b Müller S, Liepold B, Roth GJ, Bestmann HJ. Synlett 1996; 521
    • 13c Roth GJ, Liepold B, Müller SG, Bestmann HJ. Synthesis 2004; 59
  • 14 Dolbier WR. Jr, Garza OT, Al-Sader BH. J. Am. Chem. Soc. 1975; 97: 5038
  • 15 Compound (+)-3 K2CO3 (20.0 mg, 0.145 mmol) was added to a solution of 18 (2.7 mg, 9.6 μmol) in anhyd MeOH (1.00 mL) at RT under N2, and the mixture was stirred at RT for 5 min. Ohira–Bestmann reagent (15.0 μL, 0.0999 mmol) was added, and the mixture was stirred for 3 h at RT. The reaction was quenched with sat. aq NaHCO3, and the mixture was extracted with EtOAc (×2). The organic layer was washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 2% Et2O–hexane) to give a colorless oil; yield: 1.7 mg (64%); [α]D 21 +83.4 (c 0.160, CHCl3). 1H NMR (400 MHz, C6D6): δ = 6.14 (dd, J = 17.4, 11.0 Hz, 1 H), 5.21–5.11 (m, 2 H), 3.59 (dd, J = 9.5, 3.6 Hz, 1 H), 3.41 (dd, J = 9.5, 6.9 Hz, 1 H), 1.94–1.83 (m, 1 H), 1.73 (d, J = 2.2 Hz, 1 H), 1.35 (dd, J = 8.7, 2.2 Hz, 1 H), 1.27 (d, J = 6.6 Hz, 3 H), 0.97 (s, 9 H), 0.92 (s, 3 H), 0.70 (dd, J = 11.1, 8.7 Hz, 1 H), 0.05 (s, 3 H), 0.05 (s, 3 H). 13C NMR (100 MHz, C6D6): δ = 138.4, 114.1, 81.5, 69.0, 66.8, 35.3, 33.5, 27.2, 25.8, 22.3, 19.9, 18.2, 16.5, –5.5, –5.6. HRMS (APCI): m/z [M + H]+ calcd for C17H31OSi: 279.2139; found: 279.2138.