Synlett 2023; 34(13): 1597-1602
DOI: 10.1055/a-2029-4189
letter

Manganese-Mediated Aerobic Oxidative Denitroalkylation of β-Nitrostyrenes with Alkylboronic Acids

Zi-yuan Yu
,
Jing-jiang Hu
,
Ya-xuan Yu
,
Yan-qin Yuan
,
Sheng-rong Guo
This work was supported by the Natural Science Foundation of ­Zhejiang Province (No. LY19B020001) and the Special Foundation for Young Scientists of Lishui, Zhejiang (No. 2018RC09).


Abstract

An aerobic oxidative stereoselective denitroalkylation of β-nitrostyrenes under mild conditions by using an alkylboronic acid as the alkyl source was achieved. This protocol accepts a broad scope of β-nitrostyrenes and alkylboronic acids, leading to the formation of C(sp3)–C(sp2) bonds. Air was employed to reoxidize the resultant Mn(II) species back to Mn(III) during the catalytic cycle.

Supporting Information



Publication History

Received: 09 January 2023

Accepted after revision: 06 February 2023

Accepted Manuscript online:
06 February 2023

Article published online:
16 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Duan K, Yan X, Liu Y, Li Z. Adv. Synth. Catal. 2018; 360: 2781
    • 1b Shang X, Liu Z.-Q. Org. Biomol. Chem. 2022; 20: 4074
    • 1c Kanti Das K, Paul S, Panda S. Org. Biomol. Chem. 2020; 18: 8939
    • 1d Yang W.-C, Wei K, Sun X, Zhu J, Wu L. Org. Lett. 2018; 20: 3144
    • 2a Pillitteri S, Ranjan P, Van der Eycken EV, Sharma UK. Adv. Synth. Catal. 2022; 364: 1643
    • 2b Volochnyuk DM, Gorlova AO, Grygorenko OO. Chem. Eur. J. 2021; 27: 15277
  • 3 Castro S, Fernández JJ, Fañanás FJ, Vicente R, Rodríguez F. Chem. Eur. J. 2016; 22: 9068
  • 4 Yuan Y, Zheng Y, Xu B, Liao J, Bu F, Wang S, Hu J.-G, Lei A. ACS Catal. 2020; 10: 6676
    • 5a Zhang X, Rakesh KP, Ravindara L, Qin H.-L. Green Chem. 2018; 20: 4790
    • 5b Li X, Jiao N. Chin. J. Chem. 2017; 35: 1349
    • 5c Wang D, Weinstein BA, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
    • 5d Zhang L, Liu Z.-Q. Org. Lett. 2017; 19: 6594
    • 5e Zhang H, Xu J, Ouyang Y, Yue X, Zhou C, Ni Z, Li W. Chin. Chem. Lett. 2022; 33: 2036
    • 5f Dong J, Yue F, Song H, Liu Y, Wang Q. Chem. Commun. 2020; 56: 12652
    • 5g Pan C, Yuan C, Yu J.-T. Adv. Synth. Catal. 2021; 363: 4889
    • 5h Ling A, Zhang L, Tan RX, Liu Z.-Q. J. Org. Chem. 2018; 83: 14489
    • 5i Yang L, Qiu Z, Wu J, Zhao J, Shen T, Huang X, Liu Z.-Q. Org. Lett. 2021; 23: 3207
  • 6 Li G.-X, Morales-Rivera CA, Wang Y, Gao F, He G, Liu P, Chen G. Chem. Sci. 2016; 7: 6407
  • 7 Li X, Han M.-Y, Wang B, Wang L, Wang M. Org. Biomol. Chem. 2019; 17: 6612
    • 8a Marčeková M, Ferko B, Detková KR, Jakubec P. Molecules 2020; 25: 3390
    • 8b Cai X.-H, Zhang H, Guo H. Curr. Org. Chem. 2019; 23: 1131
  • 9 Kagayama T, Nakano A, Sakaguchi S, Ishii Y. Org. Lett. 2006; 8: 407
    • 10a Cahiez G, Moyeux A, Buendia J, Duplais C. J. Am. Chem. Soc. 2007; 129: 13788
    • 10b Chen Z, Wang Y, Hu C, Wang D, Lei P, Yi H, Yuan Y, Lei A. Org. Lett. 2022; 24: 3307
    • 10c Fu N, Shen Y, Allen AR, Song L, Ozaki A, Lin S. ACS Catal. 2019; 9: 746
    • 10d Truong T, Alvarado J, Tran LD, Daugulis O. Org. Lett. 2010; 12: 1200
    • 10e Wang Y, Wu R, Zhao S, Quan Z, Su Y, Huo C. Org. Biomol. Chem. 2018; 16: 1667
    • 10f Wu W, Xu J, Huang S, Su W. Chem. Commun. 2011; 47: 9660
  • 11 [(E)-2-Cyclohexylvinyl]benzene (3a); Typical Procedure A 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with β-nitrostyrene (1a; 0.2 mmol), cyclohexylboronic acid (2a; 0.6 mmol, 3.0 equiv), Mn(OAc)3·2 H2O (0.2 mmol, 1.0 equiv), ligand L6 (0.2 mmol, 1.0 equiv), TFA (0.4 mmol, 2.0 equiv), and DCE (2 mL). The mixture was then stirred at 60 °C under air for 12 h until the reaction was complete (TLC). 10% aq NaHCO3 (20 mL) was added, and the mixture was extracted with CH2Cl2 (3 × 10 mL). The combined extracts were washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The crude residue was purified by column chromatography (silica gel, EtOAc–hexane) to give a colorless oil; yield: 87%. 1H NMR (300 MHz, CDCl3): δ = 7.42–7.30 (m, 4 H), 7.28–7.19 (m, 1 H), 6.40 (d, J = 16.0 Hz, 1 H), 6.23 (dd, J = 16.0, 6.8 Hz, 1 H), 2.21–2.15 (m, 1 H), 1.89–1.71 (m, 5 H), 1.45–1.34 (m, 2 H), 1.29–1.16 (m, 3 H). 13C NMR (75 MHz, CDCl3): δ = 138.11, 136.93, 128.53, 127.26, 126.80, 126.00, 41.25, 33.02, 26.25, 26.13. HRMS (ESI-TOF): m/z [M + H]+ calcd for C14H19: 187.1482; found: 187.1479.