Synlett 2023; 34(13): 1581-1586
DOI: 10.1055/a-2005-5220
letter

A Mn(OAc)3-Triggered Formation of Cyclopropanes from Ugi Adducts

Cristina Cheibas
a   Laboratoire de Synthèse Organique (LSO -UMR 76523) CNRS, Ecole Polytechnique, ENSTA-Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau Cedex, France
,
Emilie Vieu
a   Laboratoire de Synthèse Organique (LSO -UMR 76523) CNRS, Ecole Polytechnique, ENSTA-Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau Cedex, France
,
Nicolas Casaretto
b   Laboratoire de Chimie Moléculaire (LCM -UMR 9168) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
,
Maxime Vitale
c   Laboratoire des Biomolécules LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
,
Laurence Grimaud
c   Laboratoire des Biomolécules LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
,
a   Laboratoire de Synthèse Organique (LSO -UMR 76523) CNRS, Ecole Polytechnique, ENSTA-Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau Cedex, France
› Institutsangaben


Abstract

Ugi adducts involving malonic acid monoesters and dialkoxy-substituted aromatic aldehydes can undergo an oxidative dearomatization when treated with Mn(OAc)3 leading to the formation of fused cyclopropanes as observed in the Buchner reaction of diazo compounds.

Supporting Information



Publikationsverlauf

Eingereicht: 08. November 2022

Angenommen nach Revision: 02. Januar 2023

Accepted Manuscript online:
02. Januar 2023

Artikel online veröffentlicht:
15. März 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 New address: Direction ISAE, ISAE-SUPAERO - 10 Avenue Edouard Belin - BP 54032 - 31055 Toulouse Cedex 4, France.
    • 2a Buchner E, Curtius T. Ber. Dtsch. Chem. Ges. 1885; 2377
    • 2b Buchner E. Ber. Dtsch. Chem. Ges. 1896; 106

    • For reviews, see:
    • 2c Maier G. Angew. Chem., Int. Ed. Engl. 1967; 6: 402
    • 2d McNamara OA, Maguire AR. Tetrahedron 2011; 67: 9
    • 2e Reisman SE, Nani RR, Levin S. Synlett 2011; 2437

    • First intramolecular Buchner reaction:
    • 2f Scott LT. J. Chem. Soc., Chem. Commun. 1973; 22: 882

    • For some Buchner reactions of anisole derivatives, see:
    • 2g Clarke AK, Unsworth WP, Taylor RJ. K. Tetrahedron 2018; 74: 5374
    • 3a El Kaïm L, Grimaud L, Miranda LD, Vieu E.. Tetrahedron Lett. 2006; 47: 8259
    • 3b El Kaïm L, Grimaud L, Vieu E. Org. Lett. 2007; 9: 4171
    • 3c El Kaïm L, Grimaud L, Miranda LD, Vieu E, Cano-Herrera MA, Perez-Labrada K.. Chem. Commun. 2010; 46: 2489
    • 3d Gamez-Montano R, Ibarra-Rivera T, El Kaïm L, Miranda LD. Synthesis 2010; 1285
    • 3e El Kaïm L, Grimaud L, Le Goff X-F, Menes-Arzate M, Miranda LD. Chem. Commun. 2011; 47: 8145

      For some reviews, see:
    • 4a Snider BB. Chem. Rev. 1996; 96: 339
    • 4b Mondal M, Bora U. RSC Adv. 2013; 3: 18716
    • 4c Snider BB. In Manganese Catalysis in Organic Synthesis . Sortais JB. Wiley; London: 2021: 293
  • 5 Marcaccini S, Pepino R, Cruz Pozo M, Basurto S, Garcıa-Valverde M, Torroba T. Tetrahedron Lett. 2004; 45: 3999
  • 6 CCDC 2205405 contains the supplementary crystallographic data for compounds 2b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 7 Typical Procedure for the Synthesis of Ugi Adducts To a solution of 2,3-dimethoxy-benzaldehyde (499 mg, 3.0 mmol, 1.0 equiv) in MeOH (3 mL) were added successively 2-methoxyethylamine (0.263 mL, 3.0 mmol, 1.0 equiv), malonic acid monoethyl ester (0.369 mL, 3.0 mmol, 1.0 equiv), and t-butyl isocyanide (0.341 mL, 3.0 mmol, 1.0 equiv). The resulting mixture was stirred at rt for 16 h. The solvent was removed under reduced pressure, and the crude product was purified by flash chromatography using (Et2O:PE, 70:30 to 100:0) to afford the desired product 1a in 64% isolated yield (834 mg, 1.9 mmol) as white solid; mp 122–124 °C. Rf = 0.4 (Et2O). 1H NMR (400 MHz, CDCl3, * = minor rotamer): δ = 7.16* (s, 1 H), 7.01–6.95 (m, 1 H, 2 H*), 6.90–6.86 (m, 1 H, 1 H*), 6.78 (dd, J H–H = 7.7 Hz, J H–H = 0.7 Hz, 1 H), 6.27 (s, 1 H), 6.13 (s, 1 H), 5.52* (s, 1 H), 4.19–4.11 (m, 2 H, 2 H*), 3.82–3.79 (m, 1 H), 3.82 (s, 3 H), 3.81* (s, 3 H), 3.80* (s, 3 H), 3.79 (s, 3 H), 3.68–3.62* (m, 1 H), 3.53–3.46 (m, 2 H, 2 H*), 3.41 (dd, J H–H = 7.1 Hz, J H–H = 4.9 Hz, 1 H), 3.38–3.34* (m, 1 H), 3.29–3.22* (m, 2 H), 3.25* (s, 3 H), 3.11 (s, 3 H), 3.07 (dd, J H–H = 10.1 Hz, J H–H = 4.9 Hz, 1 H), 2.81 (ddd, J H–H = 10.1 Hz, J H–H = 7.1 Hz, J H–H = 4.9 Hz, 1 H), 1.37* (s, 9 H), 1.32 (s, 9 H), 1.23 (t, J H–H = 7.1 Hz, 3 H, 3 H*). 13C NMR (100 MHz, CDCl3, * = minor rotamer): δ = 168.7, 168.6, 168.5*, 168.4*, 167.7*, 167.6, 152.7, 152.4*, 148.2, 147.7*, 129.5, 128.6*, 124.0, 123.9*, 122.6, 120.9*, 113.3*, 112.9, 70.9, 69.5*, 62.4*, 61.4 (1 C, 1 C*), 60.5 (1 C, 1 C*), 58.9, 58.5*, 58.2, 55.8 (1 C, 1 C*), 51.6*, 51.4, 46.4, 45.2*, 41.9*, 41.5, 28.7 (3 C), 28.6* (3 C), 14.1 (1 C, 1 C*). HRMS: m/z calcd for C22H35N2O7 +: 439.2439; found: 439.2424. IR (thin film): ν = 3335, 2952, 1746, 1656, 1477, 1307, 1273, 1231, 1045, 886, 752 cm–1. General Procedure for the Conversion of 1a into 2a To a solution of Ugi adduct 1a (88 mg, 0.2 mmol, 1.0 equiv) in acetic acid (0.03 M) was added Mn(OAc)3·2H2O (276 mg, 1.0 mmol, 5.0 equiv) under argon, and the resulting solution was stirred at 90 °C for 5 h until the dark brown color of Mn(III) acetate had disappeared. The solvent was removed under reduced pressure, and the crude mixture was filtered on a small amount of silica gel to remove residues of Mn, then purified by flash chromatography (Et2O:PE, 90:10 to 100:0) to afford the desired product 2a in 55% isolated yield (53 mg, 0.11 mmol) as yellow oil. Rf = 0.25 (Et2O). 1H NMR (400 MHz, CDCl3): δ = 5.95 (dd, J H–H = 6.1 Hz, J H–H = 0.8 Hz, 1 H), 5.87 (s, 1 H), 5.55 (dd, J H–H = 6.1 Hz, J H–H = 1.7 Hz, 1 H), 5.07 (s, 1 H), 4.20–4.09 (m, 2 H), 3.81–3.75 (m, 1 H), 3.60–3.55 (m, 1 H), 3.59 (s, 3 H), 3.52–3.47 (m, 1 H), 3.33 (s, 3 H), 3.21 (ddd, J H–H = 14.7 Hz, J H–H = 8.8 Hz, J H–H = 3.5 Hz, 1 H), 2.66 (t, J H–H = 1.2 Hz, 1 H), 1.97 (s, 3 H), 1.32 (s, 9 H), 1.21 (t, J H–H = 7.1 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 185.7, 169.9, 166.8, 166.0, 162.4, 153.3, 106.8, 70.7, 63.4, 62.7, 58.8, 58.5, 55.7, 51.8, 47.2, 41.9, 41.0, 30.6, 28.7 (3 C), 20.9, 14.0. HRMS: m/z calcd for C23H32N2O9 +: 481.2181; found: 481.2178. IR (thin film): ν = 3349, 2971, 1738, 1693, 1221, 1092 cm–1.
  • 8 The starting malonic amide was prepared by a selective amidification of the diester followed by saponification, see: Zidan A, Garrec J, Cordier El Naggar MA. M, El-Sattar NE. A, Ali AK, Hassan MA, El Kaïm L. Angew. Chem. Int. Ed. 2017; 56: 12179
    • 9a Zidan A, El-Naggar AM, Abd El-Sattar NE. A, Khaloil Ali A, El Kaïm L. Front. Chem. 2019; 7: 20
    • 9b Yan Y.-M, Wang M.-L, Liu Y.-L, He Y.-C. Tetrahedron 2020; 76: 131389
    • 9c Polindara-Garcia LA, Miranda LD. Org. Lett. 2012; 14: 5408
  • 10 El Kaïm L, Gamez-Montano R, Grimaud L, Ibarra-Rivera T. Chem. Commun. 2008; 1350
    • 11a Shundo R, Nishiguchi I, Matsubara Y, Hirashima T. Tetrahedron 1991; 47: 831
    • 11b Warsinsky R, Steckhan E. J. Chem. Soc., Perkin Trans. 1 1994; 2027
    • 11c Strehl J, Hilt G. Org. Lett. 2019; 21: 5259
  • 12 Cyclic voltammetry experiments did not allow detecting the enol form of 1a, even at 90 °C.