Synlett 2023; 34(04): 359-363
DOI: 10.1055/a-1992-6707
letter

Chemoselective Strain Release of Bicyclo[1.1.1]pent-1-yl Alcohols

Yue Ma
a   Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. of China
,
Yinan Ai
a   Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. of China
,
Songjie Yu
a   Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. of China
b   Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, P. R. of China
› Author Affiliations
We thank the Dalian University of Technology, the Fundamental Research Funds for the Central Universities, and the Shandong Non-metallic Materials Institute for financial support. S.Y. thanks the Taishan Scholar of Shandong Province and the Qilu Young Scholar of Shandong University for funding.


In memory of Professor Keli Han.

Abstract

The chemoselective C–C bond cleavage of bicyclo[1.1.1]pent-1-yl alcohols (BCP-OHs) was examined. Highly ring-strained BCP-OHs were found to be particularly reactive, delivering cyclobutanone derivatives through a base-mediated single C–C bond cleavage or α,β-unsaturated ketones by palladium-catalyzed dual C–C bond cleavage.

Supporting Information



Publication History

Received: 01 October 2022

Accepted after revision: 04 December 2022

Accepted Manuscript online:
04 December 2022

Article published online:
03 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Cai X, Liang W, Dai M. Tetrahedron 2019; 75: 193
    • 3a Nishimura T, Uemura S. J. Am. Chem. Soc. 1999; 121: 11010
    • 3b Wang Q, Chen R, Lou J, Zhang DH, Zhou Y.-G, Yu Z. ACS Catal. 2019; 9: 11669
    • 4a Yada A, Fujita S, Murakami M. J. Am. Chem. Soc. 2014; 136: 7217
    • 4b Xia Y, Liu Z, Liu Z, Ge R, Ye F, Hossain M, Zhang Y, Wang J. J. Am. Chem. Soc. 2014; 136: 3013
    • 5a Ishida N, Sawano S, Masuda Y, Murakami M. J. Am. Chem. Soc. 2012; 134: 17502
    • 5b Das PP, Belmore K, Cha JK. Angew. Chem. Int. Ed. 2012; 51: 9517
    • 5c Yu JJ, Yan H, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 1143
    • 5d Yang JF, Shen YX, Lim YJ, Yoshikai N. Chem. Sci. 2018; 9: 6928
    • 6a Souillart L, Cramer N. Chem. Sci. 2014; 5: 837
    • 6b Yang J, Sekiguchi Y, Yoshikai N. ACS Catal. 2019; 9: 5638
    • 6c Lou C, Wang X, Lv L, Li Z. Org. Lett. 2021; 23: 7608
    • 8a Jia K, Zhang F, Huang H, Chen Y. J. Am. Chem. Soc. 2016; 138: 1514
    • 8b Wang J, Huang B, Shi C, Yang C, Xia W. J. Org. Chem. 2018; 83: 9696
    • 8c Wu X, Zhu C. Chin. J. Chem. 2019; 37: 171
    • 8d Wu X, Zhu C. Chem. Commun. 2019; 55: 9747
    • 8e Tsui E, Wang HJ, Knowles RR. Chem. Sci. 2020; 11: 11124
    • 10a Ren R, Zhao H, Huan L, Zhu C. Angew. Chem. Int. Ed. 2015; 54: 12692
    • 10b Huan L, Zhu C. Org. Chem. Front. 2016; 3: 1467
    • 10c Ren R, Wu Z, Xu Y, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 2866
  • 11 Jiao J, Nguyen LX, Patterson DR, Flowers RA. II. Org. Lett. 2007; 9: 1323
    • 12a Yayla HG, Wang H, Tarantino KT, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2016; 138: 10794
    • 12b Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
    • 12c Guo J.-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
    • 12d Wang D, Mao J, Zhu C. Chem. Sci. 2018; 9: 5805
    • 12e Liu W, Wu Q, Wang M, Huang Y, Hu P. Org. Lett. 2021; 23: 8413
    • 12f Wang K, Zeng R. Org. Chem. Front. 2022; 9: 3692
    • 13a Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Angew. Chem. Int. Ed. 2022; 61: e202200052
    • 13b Yu S, Noble A, Bedford RB, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 20325
    • 13c Ai Y, Yang H, Duan C, Li X, Yu S. Org. Lett. 2022; 24: 5051
  • 14 Li J, Gao K, Bian M, Ding H. Org. Chem. Front. 2020; 7: 136
    • 15a Tanino K, Takahashi M, Tomata Y, Tokura H, Uehara T, Narabu T, Miyashita M. Nat. Chem. 2011; 3: 484
    • 15b Deng L, Fu Y, Lee SY, Wang C, Liu P, Dong G. J. Am. Chem. Soc. 2019; 141: 16260
    • 15c Sun M, Li W.-DZ, Qiu FG. Org. Lett. 2019; 21: 644
    • 15d Hou S.-H, Yu X, Zhang R, Deng L, Zhang M, Prichina AY, Dong G. J. Am. Chem. Soc. 2020; 142: 13180
    • 16a Filosa R, Fulco MC, Marinozzi M, Giacché N, Macchiarulo A, Peduto A, Massa A, de Caprariis P, Thomsen C, Christoffersen CT, Pellicciari R. Bioorg. Med. Chem. 2009; 17: 242
    • 16b Stepan AF, Subramanyam C, Efremov IV, Dutra JK, O’Sullivan TJ, DiRico KJ, McDonald WS, Won A, Dorff PH, Nolan CE, Becker SL, Pustilnik LR, Riddell DR, Kauffman GW, Kormos BL, Zhang L, Lu Y, Capetta SH, Green ME, Karki K, Sibley E, Atchison KP, Hallgren AJ, Oborski CE, Robshaw AE, Sneed B, O’Donnell CJ. J. Med. Chem. 2012; 55: 3414
    • 16c Nicolaou KC, Vourloumis D, Totokotsopoulos S, Papakyriakou A, Karsunky H, Fernando H, Gavrilyuk J, Webb D, Stepan AF. ChemMedChem 2016; 11: 31
    • 16d Measom ND, Down KD, Hirst DJ, Jamieson C, Manas ES, Patel VK, Somers DO. ACS Med. Chem. Lett. 2017; 8: 43
  • 17 Cyclobutanones 2a–o; General Procedure A dried 8 mL vial was charged with the appropriate BCP-OH 1 (0.1 mmol), Cs2CO3 (30 mol%, 9.8 mg), and anhyd THF (1 mL). The vial was then sealed with a cap and the mixture was stirred at 100 ℃ for 16 h. The mixture was then purified by flash column chromatography [silica gel, PE–EtOAc (60:1)]. The TLC plate for the product was visualized with phosphomolybdic acid stain. 3-Methyl-3-(2-tolyl)cyclobutan-1-one Colorless oil; yield: 17.2 mg (99%). 1H NMR (400 MHz, CDCl3): δ = 7.22–7.13 (m, 4 H), 3.60–3.48 (m, 2 H), 3.20–3.04 (m, 2 H), 2.37 (s, 3 H), 1.58 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 207.1, 145.5, 135.2, 131.7, 126.9, 126.6, 126.3, 59.2, 34.7, 28.6, 20.4. GC/MS (EI): m/z [M+] calcd for C12H14O: 174.1; found: 174.1. α,β-Unsaturated Ketones 3a–f; General Procedure A dried 8 mL vial was charged with the appropriate BCP-OH 1 (0.1 mmol), Cs2CO3 (30 mol%, 9.8 mg), Pd(OAc)2 (5 mol%, 1.2 mg), and anhyd THF (1 mL). The vial was then sealed with a cap and the mixture was stirred at 100 ℃ for 16 h. The mixture was then purified by flash column chromatography [silica gel, PE–EtOAc (20:1)]. The TLC plate for the product was visualized with phosphomolybdic acid stain. (3E)-4-Phenylpent-3-en-2-one Colorless oil; yield: 15.5 mg (97%). 1H NMR (400 MHz, CDCl3): δ = 7.53–7.36 (m, 5 H), 6.53 (s, 1 H), 2.56 (s, 3 H), 2.32 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 198.9, 153.9, 142.6, 129.1, 128.6, 126.5, 124.6, 32.2, 18.4. GC/MS (EI): m/z [M+] calcd for C11H12O: 160.1; found: 160.1.
  • 18 Poplata S, Troester A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
  • 19 Pentsak EO, Eremin DB, Gordeev EG, Ananikov VP. ACS Catal. 2019; 9: 3070
  • 20 Seiser T, Roth OA, Cramer N. Angew. Chem. Int. Ed. 2009; 48: 6320
  • 21 Analysis of Cs2CO3 by inductively coupled plasma atomic-emission spectroscopy showed the presence of low levels of transition-metal residues; for example, Pd < 0.04 mg/L, Cu < 0.01 mg/L, Co < 0.007 mg/L, Ni < 0.015 mg/L (for details, see the Supporting Information).