CC BY-NC-ND 4.0 · Synlett 2023; 34(12): 1356-1366
DOI: 10.1055/a-1987-6464
account
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Versatile Utility of Cp*Co(III) Catalysts in C–H Amination under Inner- and Outer-Sphere Pathway

Jeonghyo Lee
a   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
b   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
,
Sukbok Chang
a   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
b   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
› Author Affiliations
This research was supported by the Institute for Basic Science (IBS-R010­-D1).


Dedicated to Professor Masahiro Murakami

Abstract

This Account describes the recent advances in our research program toward the development of cobalt-catalyzed C–H amidation reactions. In particular, synthetic versatilities of obtainable amino products shown to be achieved on the basis of two distinctive mechanistic scaffolds; inner- and outer-sphere pathways. It highlights our approaches to transit the modes of C–N bond formation by introduction of bidentate LX-type ligands into Cp*Co(III) precursors, thereby broadly expanding the scope of amination reactions.

1 Introduction

2 Cp*Co-Catalyzed Inner-Sphere C–H Amidation

3 Cp*Co-Catalyzed Outer-Sphere C–H Amidation

3.1 C(sp2)–N Bond Formation

3.2 C(sp3)–N Bond Formation

4 Conclusion



Publication History

Received: 31 October 2022

Accepted after revision: 24 November 2022

Accepted Manuscript online:
25 November 2022

Article published online:
11 January 2023

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Davies HM, Morton D. J. Org. Chem. 2016; 81: 343
    • 1b Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
    • 2a Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 10571
    • 2b Zhang C, Li Z.-L, Gu Q.-S, Liu X.-Y. Nat. Commun. 2021; 12: 475
    • 3a Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
    • 3b Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 3c Kim K, Cho S, Park S, Lee Y. Bull. Korean Chem. Soc. 2021; 42: 699
    • 3d Kim TK, Youn SW. Bull. Korean Chem. Soc. 2021; 42: 521
    • 3e Lee YL, Lee KR, Xuan Z, Lee S.-g. Bull. Korean Chem. Soc. 2021; 42: 537
    • 3f Barranco S, Zhang J, López-Resano S, Casnati A, Pérez-Temprano MH. Nat. Synth. 2022; 1: 841
    • 4a Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
    • 4b Li X, Ouyang W, Nie J, Ji S, Chen Q, Huo Y. ChemCatChem 2020; 12: 2358
    • 4c Kim J, Jin S, Kim D, Chang S. Bull. Korean Chem. Soc. 2021; 42: 529
  • 5 Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
  • 6 Park J, Chang S. Chem. Asian J. 2018; 13: 1089
  • 7 Wang X, Lerchen A, Glorius F. Org. Lett. 2016; 18: 2090
  • 8 Lu H, Hu Y, Jiang H, Wojtas L, Zhang XP. Org. Lett. 2012; 14: 5158
  • 9 Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
    • 10a Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
    • 10b Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
  • 11 Pesciaioli F, Dhawa U, Oliveira JC, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
  • 12 Ozols K, Jang Y.-S, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
    • 13a Huang Y, Pi C, Tang Z, Wu Y, Cui X. Chin. Chem. Lett. 2020; 31: 3237
    • 13b Yan R, Yu H, Wang Z.-X. Chin. J. Chem. 2021; 39: 1205
    • 13c Yu Y, Xia Z, Wu Q, Liu D, Yu L, Xiao Y, Tan Z, Deng W, Zhu G. Chin. Chem. Lett. 2021; 32: 1263
  • 14 Wang S, Chen S.-Y, Yu X.-Q. Chem. Commun. 2017; 53: 3165
  • 15 Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. ChemSusChem 2020; 13: 3306
  • 17 Sun B, Yoshino T, Matsunaga S, Kanai M. Adv. Synth. Catal. 2014; 356: 1491
  • 18 Patel P, Chang S. ACS Catal. 2015; 5: 853
    • 19a Park Y, Jee S, Kim JG, Chang S. Org. Process Res. Dev. 2015; 19: 1024
    • 19b Park Y, Park KT, Kim JG, Chang S. J. Am. Chem. Soc. 2015; 137: 4534
  • 20 Park J, Chang S. Angew. Chem. Int. Ed. 2015; 54: 14103
  • 21 Tan PW, Mak AM, Sullivan MB, Dixon DJ, Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
  • 22 Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
  • 23 Breslow R, Gellman SH. J. Chem. Soc., Chem. Commun. 1982; 1400
  • 24 Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 25a Kim JY, Park SH, Ryu J, Cho SH, Kim SH, Chang S. J. Am. Chem. Soc. 2012; 134: 9110
    • 25b Ryu J, Shin K, Park SH, Kim JY, Chang S. Angew. Chem. Int. Ed. 2012; 51: 9904
    • 25c Ryu J, Kwak J, Shin K, Lee D, Chang S. J. Am. Chem. Soc. 2013; 135: 12861
    • 25d Shin K, Baek Y, Chang S. Angew. Chem. Int. Ed. 2013; 52: 8031
    • 25e Hwang H, Kim J, Jeong J, Chang S. J. Am. Chem. Soc. 2014; 136: 10770
    • 25f Kim J, Chang S. Angew. Chem. Int. Ed. 2014; 53: 2203
    • 25g Park SH, Kwak J, Shin K, Ryu J, Park Y, Chang S. J. Am. Chem. Soc. 2014; 136: 2492
    • 25h Shin K, Ryu J, Chang S. Org. Lett. 2014; 16: 2022
    • 25i Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 25j Park Y, Heo J, Baik M.-H, Chang S. J. Am. Chem. Soc. 2016; 138: 14020
    • 25k Hwang Y, Park Y, Chang S. Chem. Eur. J. 2017; 23: 11147
    • 25l Park J, Lee J, Chang S. Angew. Chem. Int. Ed. 2017; 56: 4256
  • 26 Hong SY, Park Y, Hwang Y, Kim YB, Baik M.-H, Chang S. Science 2018; 359: 1016
  • 27 Hong SY, Hwang Y, Lee M, Chang S. Acc. Chem. Res. 2021; 54: 2683
    • 28a Park Y, Chang S. Nat. Catal. 2019; 2: 219
    • 28b Hong SY, Kim D, Chang S. Nat. Catal. 2021; 4: 79
    • 28c Kim S, Kim D, Hong SY, Chang S. J. Am. Chem. Soc. 2021; 143: 3993
    • 28d Lee E, Hwang Y, Kim YB, Kim D, Chang S. J. Am. Chem. Soc. 2021; 143: 6363
  • 29 Hwang Y, Park Y, Kim YB, Kim D, Chang S. Angew. Chem. Int. Ed. 2018; 57: 13565
  • 30 Kweon J, Kim D, Kang S, Chang S. J. Am. Chem. Soc. 2022; 144: 1872
  • 31 Hong SY, Son J, Kim D, Chang S. J. Am. Chem. Soc. 2018; 140: 12359
  • 32 Hwang Y, Baek SB, Kim D, Chang S. J. Am. Chem. Soc. 2022; 144: 4277
  • 33 Hwang Y, Jung H, Lee E, Kim D, Chang S. J. Am. Chem. Soc. 2020; 142: 8880
  • 34 Jung H, Schrader M, Kim D, Baik M.-H, Park Y, Chang S. J. Am. Chem. Soc. 2019; 141: 15356
    • 35a Lee M, Jung H, Kim D, Park J.-W, Chang S. J. Am. Chem. Soc. 2020; 142: 11999
    • 35b Gwon Y, Lee M, Kim D, Chang S. Org. Lett. 2022; 24: 1088
  • 36 Lee J, Lee J, Jung H, Kim D, Park J, Chang S. J. Am. Chem. Soc. 2020; 142: 12324
  • 37 Niemi T, Repo T. Eur. J. Org. Chem. 2019; 1180
  • 38 Heravi MM, Zadsirjan V. Tetrahedron: Asymmetry 2013; 24: 1149
  • 39 Jiao J, Murakami K, Itami K. ACS Catal. 2016; 6: 610
    • 40a Allen RH, Alfrey TJr, Yats LD. J. Am. Chem. Soc. 1959; 81: 42
    • 40b Olah GA, Olah JA, Ohyama T. J. Am. Chem. Soc. 1984; 106: 5284
  • 41 Lee J, Kang B, Kim D, Lee J, Chang S. J. Am. Chem. Soc. 2021; 143: 18406
  • 42 Woodward R, Singh T. J. Am. Chem. Soc. 1950; 72: 494
  • 43 Lee J, Kang B, Kim D, Chang S. Org. Lett. 2022; 24: 5845
  • 44 Lee J, Jin S, Kim D, Hong SH, Chang S. J. Am. Chem. Soc. 2021; 143: 5191